Brownian motion#

Brownian motion, or pedesis, is the random motion of particles suspended in a medium. In this animation, path followed by 20 particles exhibiting brownian motion in 3D is plotted.

Importing necessary modules

import numpy as np
from scipy.stats import norm

from fury import actor, ui, utils, window

Let’s define some variable and their description:

  • total_time: time to be discretized via time_steps (default: 5)

  • num_total_steps: total number of steps each particle will take (default: 300)

  • time_step: By default, it is equal to total_time / num_total_steps

  • counter_step: to keep track of number of steps taken (initialised to 0)

  • delta: delta determines the “speed” of the Brownian motion. Increase delta to speed up the motion of the particle(s). The random variable of the position has a normal distribution whose mean is the position at counter_step = 0 and whose variance is equal to delta**2*time_step. (default: 1.8)

  • num_particles: number of particles whose path will be plotted (default: 20)

  • path_thickness: thickness of line(s) that will be used to plot the path(s) of the particle(s) (default: 3)

  • origin: coordinate from which the the particle(s) begin the motion (default: [0, 0, 0])

We define a particle function that will return an actor, store and update coordinates of the particles (the path of the particles).

def particle(
    origin=[0, 0, 0],
    origin = np.asarray(origin, dtype=float)
    position = np.tile(origin, (num_total_steps, 1))
    path_actor = actor.line([position], colors, linewidth=path_thickness)
    path_actor.position = position = delta
    path_actor.num_total_steps = num_total_steps
    path_actor.time_step = total_time / num_total_steps
    path_actor.vertices = utils.vertices_from_actor(path_actor)
    path_actor.no_vertices_per_point = len(path_actor.vertices) / num_total_steps
    path_actor.initial_vertices = path_actor.vertices.copy() - np.repeat(
        position, path_actor.no_vertices_per_point, axis=0
    return path_actor

The function update_path will simulate the the brownian motion.

def update_path(act, counter_step):
    if counter_step < act.num_total_steps:
        x, y, z = act.position[counter_step - 1]
        x += norm.rvs(**2 * act.time_step)
        y += norm.rvs(**2 * act.time_step)
        z += norm.rvs(**2 * act.time_step)
        act.position[counter_step:] = [x, y, z]
        act.vertices[:] = act.initial_vertices + np.repeat(
            act.position, act.no_vertices_per_point, axis=0

Creating a scene object and configuring the camera’s position

scene = window.Scene()
scene.background((1.0, 1.0, 1.0))
    position=(0, 0, 40), focal_point=(0.0, 0.0, 0.0), view_up=(0.0, 0.0, 0.0)
showm = window.ShowManager(
    scene, size=(600, 600), reset_camera=True, order_transparent=True

Creating a list of particle objects

Creating a container (cube actor) inside which the particle(s) move around

container_actor =
    centers=np.array([[0, 0, 0]]), colors=(0.5, 0.9, 0.7, 0.4), scales=6

Initializing text box to display the name of the animation

tb = ui.TextBlock2D(bold=True, position=(235, 40), color=(0, 0, 0))
tb.message = 'Brownian Motion'

The path of the particles exhibiting Brownian motion is plotted here

def timer_callback(_obj, _event):
    global counter_step, list_particle
    counter_step += 1
    for p in l_particle:
        update_path(p, counter_step=counter_step)
    if counter_step == num_total_steps:

Run every 30 milliseconds

showm.add_timer_callback(True, 30, timer_callback)
window.record(showm.scene, size=(600, 600), out_path='viz_brownian_motion.png')
viz brownian motion

Total running time of the script: ( 0 minutes 9.435 seconds)

Gallery generated by Sphinx-Gallery