Fractals#

Fractals are geometric structures that are self-similar at any scale. These structures are easy to generate using recursion. In this demo, we’ll be implementing the following fractals:

  • Sierpinski Tetrahedron or Tetrix

  • Menger Sponge

  • Moseley Snowflake

Let’s begin by importing some necessary modules. We need fury.primitive to avoid having to hardcode the geometry of a tetrahedron and a cube. fury.utils also contains a repeat_primitive function which we will use for this demo.

import math

import numpy as np

import fury

Before we create our first fractal, let’s set some ground rules for us to work with.

1. Instead of creating a new actor to represent each primitive of the fractal, we will compute the centers of each primitive and draw them at once using repeat_primitive().

2. How many primitives do we need? For each fractal, we define a depth which will prevent infinite recursion. Assuming we have a depth of \(N\), and at each level the shape is divided into \(k\) smaller parts, we will need \(k^{N}\) primitives to represent the fractal.

3. Ideally, we want to allocate the array of centers upfront. To achieve this, we can use the method of representing a binary tree in an array, and extend it to work with k-ary trees (formulas for the same can be found here). In this scheme of representation, we represent every primitive as a node, and each sub-primitive as a child node. We can also skip storing the first \(\frac{k^{N} - 1}{k - 1} + 1\) entries as we only need to render the leaf nodes. This allows us to create an array of exactly the required size at the start, without any additional overhead.


The tetrix is a classic 3d fractal, a natural three-dimensional extension of the Sierpinski Triangle. At each level, we need to calculate the new centers for the next level. We can use the vertices of a tetrahedron as the offsets for the new centers, provided that the tetrahedron is centered at the origin (which is the case here).

def tetrix(N):
    centers = np.zeros((4**N, 3))

    # skipping non-leaf nodes (see above)
    offset = (4**N - 1) // 3 + 1

    # just need the vertices
    U, _ = fury.primitive.prim_tetrahedron()

    def gen_centers(depth, pos, center, dist):
        if depth == N:
            centers[pos - offset] = center
        else:
            idx = 4 * (pos - 1) + 2
            for i in range(4):
                # distance gets halved at each level
                gen_centers(depth + 1, idx + i, center + dist * U[i], dist / 2)

    # the division by sqrt(6) is to ensure correct scale
    gen_centers(0, 1, np.zeros(3), 2 / (6**0.5))

    vertices, faces = fury.primitive.prim_tetrahedron()

    # primitive is scaled down depending on level
    vertices /= 2 ** (N - 1)

    # compute some pretty colors
    bounds_min, bounds_max = np.min(centers, axis=0), np.max(centers, axis=0)
    colors = (centers - bounds_min) / (bounds_max - bounds_min)

    vertices, triangles, colors, _ = fury.primitive.repeat_primitive(
        centers=centers, colors=colors, vertices=vertices, faces=faces
    )
    return fury.utils.get_actor_from_primitive(vertices, triangles, colors)

For a Menger Sponge, each cube is divided into 27 smaller cubes, and we skip some of them (face centers, and the center of the cube). This means that on every level we get 20 new cubes.

Here, to compute the points of each new center, we start at a corner cube’s center and add the offsets to each smaller cube, scaled according to the level.

def sponge(N):
    centers = np.zeros((20**N, 3))
    offset = (20**N - 1) // 19 + 1

    # these are the offsets of the new centers at the next level of recursion
    # each cube is divided into 20 smaller cubes for a snowflake
    V = np.array(
        [
            [0, 0, 0],
            [0, 0, 1],
            [0, 0, 2],
            [0, 1, 0],
            [0, 1, 2],
            [0, 2, 0],
            [0, 2, 1],
            [0, 2, 2],
            [1, 0, 0],
            [1, 0, 2],
            [1, 2, 0],
            [1, 2, 2],
            [2, 0, 0],
            [2, 0, 1],
            [2, 0, 2],
            [2, 1, 0],
            [2, 1, 2],
            [2, 2, 0],
            [2, 2, 1],
            [2, 2, 2],
        ]
    )

    def gen_centers(depth, pos, center, dist):
        if depth == N:
            centers[pos - offset] = center
        else:
            # we consider a corner cube as our starting point
            start = center - np.array([1, 1, 1]) * dist**0.5
            idx = 20 * (pos - 1) + 2

            # this moves from the corner cube to each new cube's center
            for i in range(20):
                # each cube is divided into 27 cubes so side gets divided by 3
                gen_centers(depth + 1, idx + i, start + V[i] * dist, dist / 3)

    gen_centers(0, 1, np.zeros(3), 1 / 3)

    vertices, faces = fury.primitive.prim_box()
    vertices /= 3**N

    bounds_min, bounds_max = np.min(centers, axis=0), np.max(centers, axis=0)
    colors = (centers - bounds_min) / (bounds_max - bounds_min)

    vertices, triangles, colors, _ = fury.primitive.repeat_primitive(
        centers=centers, colors=colors, vertices=vertices, faces=faces
    )
    return fury.utils.get_actor_from_primitive(vertices, triangles, colors)

A snowflake is exactly the same as above, but we skip different cubes (corners and center). I think this looks quite interesting, and it is possible to see the Koch snowflake if you position the camera just right.

def snowflake(N):
    centers = np.zeros((18**N, 3))
    offset = (18**N - 1) // 17 + 1
    V = np.array(
        [
            [0, 0, 1],
            [0, 1, 0],
            [0, 1, 1],
            [0, 1, 2],
            [0, 2, 1],
            [1, 0, 0],
            [1, 0, 1],
            [1, 0, 2],
            [1, 1, 0],
            [1, 1, 2],
            [1, 2, 0],
            [1, 2, 1],
            [1, 2, 2],
            [2, 0, 1],
            [2, 1, 0],
            [2, 1, 1],
            [2, 1, 2],
            [2, 2, 1],
        ]
    )

    def gen_centers(depth, pos, center, side):
        if depth == N:
            centers[pos - offset] = center
        else:
            start = center - np.array([1, 1, 1]) * side**0.5
            idx = 18 * (pos - 1) + 2
            for i in range(18):
                gen_centers(depth + 1, idx + i, start + V[i] * side, side / 3)

    gen_centers(0, 1, np.zeros(3), 1 / 3)

    vertices, faces = fury.primitive.prim_box()
    vertices /= 3**N

    bounds_min, bounds_max = np.min(centers, axis=0), np.max(centers, axis=0)
    colors = (centers - bounds_min) / (bounds_max - bounds_min)

    vertices, triangles, colors, _ = fury.primitive.repeat_primitive(
        centers=centers, colors=colors, vertices=vertices, faces=faces
    )
    return fury.utils.get_actor_from_primitive(vertices, triangles, colors)

Now that we have the functions to generate fractals, we can start setting up the Scene and ShowManager.

scene = fury.window.Scene()
showmgr = fury.window.ShowManager(scene, "Fractals", (800, 800), reset_camera=True)
/opt/homebrew/Caskroom/miniforge/base/envs/py39/lib/python3.9/site-packages/sphinx_gallery/gen_rst.py:722: UserWarning: We'll no longer accept the way you call the __init__ function in future versions of FURY.

Here's how to call the Function __init__: __init__(self_value, scene='value', title='value', size='value', png_magnify='value', reset_camera='value', order_transparent='value', interactor_style='value', stereo='value', multi_samples='value', max_peels='value', occlusion_ratio='value')

  exec(self.code, self.fake_main.__dict__)

These values are what work nicely on my machine without lagging. If you have a powerful machine, you could bump these up by around 2-3.

fractals = [tetrix(6), sponge(3), snowflake(3)]
/Users/skoudoro/devel/fury/docs/examples_revamped/04_demos/viz_fractals.py:230: UserWarning: We'll no longer accept the way you call the get_actor_from_primitive function in future versions of FURY.

Here's how to call the Function get_actor_from_primitive: get_actor_from_primitive(vertices_value, triangles_value, colors='value', normals='value', backface_culling='value', prim_count='value')

  fractals = [tetrix(6), sponge(3), snowflake(3)]

We want to be able to switch between the three fractals. To achieve this we’ll create a RadioButton and register a callback which will remove existing fractals and add the selected one. This also resets the camera.

options = {
    "Tetrix": 0,
    "Sponge": 1,
    "Snowflake": 2,
}

shape_chooser = fury.ui.RadioButton(
    options.keys(),
    padding=10,
    font_size=16,
    checked_labels=["Tetrix"],
    position=(10, 10),
)


def choose_shape(radio):
    showmgr.scene.rm(*fractals)
    showmgr.scene.add(fractals[options[radio.checked_labels[0]]])
    showmgr.scene.reset_camera()


shape_chooser.on_change = choose_shape

# selected at start
showmgr.scene.add(fractals[0])
showmgr.scene.add(shape_chooser)

Let’s add some basic camera movement to make it look a little interesting. We can use a callback here to update a counter and calculate the camera positions using the counter. sin and cos are used here to make smooth looping movements.

counter = 0


def timer_callback(_obj, _event):
    global counter
    counter += 1
    showmgr.scene.azimuth(math.sin(counter * 0.01))
    showmgr.scene.elevation(math.cos(counter * 0.01) / 4)
    showmgr.render()


showmgr.add_timer_callback(True, 20, timer_callback)
4

Finally, show the window if running in interactive mode or render to an image otherwise. This is needed for generating the documentation that you are reading.

interactive = False
if interactive:
    showmgr.start()
else:
    fury.window.record(showmgr.scene, out_path="fractals.png", size=(800, 800))
viz fractals
/opt/homebrew/Caskroom/miniforge/base/envs/py39/lib/python3.9/site-packages/sphinx_gallery/gen_rst.py:722: UserWarning: We'll no longer accept the way you call the record function in future versions of FURY.

Here's how to call the Function record: record(scene='value', cam_pos='value', cam_focal='value', cam_view='value', out_path='value', path_numbering='value', n_frames='value', az_ang='value', magnification='value', size='value', reset_camera='value', screen_clip='value', stereo='value', verbose='value')

  exec(self.code, self.fake_main.__dict__)

Total running time of the script: (0 minutes 0.203 seconds)

Gallery generated by Sphinx-Gallery