Source code for fury.transform

import math

import numpy as np
from scipy.spatial.transform import Rotation as Rot  # type: ignore

from fury.decorators import warn_on_args_to_kwargs

# axis sequences for Euler angles
_NEXT_AXIS = [1, 2, 0, 1]

# map axes strings to/from tuples of inner axis, parity, repetition, frame
_AXES2TUPLE = {
    "sxyz": (0, 0, 0, 0),
    "sxyx": (0, 0, 1, 0),
    "sxzy": (0, 1, 0, 0),
    "sxzx": (0, 1, 1, 0),
    "syzx": (1, 0, 0, 0),
    "syzy": (1, 0, 1, 0),
    "syxz": (1, 1, 0, 0),
    "syxy": (1, 1, 1, 0),
    "szxy": (2, 0, 0, 0),
    "szxz": (2, 0, 1, 0),
    "szyx": (2, 1, 0, 0),
    "szyz": (2, 1, 1, 0),
    "rzyx": (0, 0, 0, 1),
    "rxyx": (0, 0, 1, 1),
    "ryzx": (0, 1, 0, 1),
    "rxzx": (0, 1, 1, 1),
    "rxzy": (1, 0, 0, 1),
    "ryzy": (1, 0, 1, 1),
    "rzxy": (1, 1, 0, 1),
    "ryxy": (1, 1, 1, 1),
    "ryxz": (2, 0, 0, 1),
    "rzxz": (2, 0, 1, 1),
    "rxyz": (2, 1, 0, 1),
    "rzyz": (2, 1, 1, 1),
}

_TUPLE2AXES = {v: k for k, v in _AXES2TUPLE.items()}


[docs] @warn_on_args_to_kwargs() def euler_matrix(ai, aj, ak, *, axes="sxyz"): """Return homogeneous rotation matrix from Euler angles and axis sequence. Code modified from the work of Christoph Gohlke link provided here http://www.lfd.uci.edu/~gohlke/code/transformations.py.html Parameters ---------- ai, aj, ak : Euler's roll, pitch and yaw angles axes : One of 24 axis sequences as string or encoded tuple Returns ------- matrix : ndarray (4, 4) Code modified from the work of Christoph Gohlke link provided here http://www.lfd.uci.edu/~gohlke/code/transformations.py.html Examples -------- >>> import numpy >>> R = euler_matrix(1, 2, 3, 'syxz') >>> numpy.allclose(numpy.sum(R[0]), -1.34786452) True >>> R = euler_matrix(1, 2, 3, (0, 1, 0, 1)) >>> numpy.allclose(numpy.sum(R[0]), -0.383436184) True >>> ai, aj, ak = (4.0*math.pi) * (numpy.random.random(3) - 0.5) >>> for axes in _AXES2TUPLE.keys(): ... _ = euler_matrix(ai, aj, ak, axes) >>> for axes in _TUPLE2AXES.keys(): ... _ = euler_matrix(ai, aj, ak, axes) """ try: firstaxis, parity, repetition, frame = _AXES2TUPLE[axes] except (AttributeError, KeyError): firstaxis, parity, repetition, frame = axes i = firstaxis j = _NEXT_AXIS[i + parity] k = _NEXT_AXIS[i - parity + 1] if frame: ai, ak = ak, ai if parity: ai, aj, ak = -ai, -aj, -ak si, sj, sk = math.sin(ai), math.sin(aj), math.sin(ak) ci, cj, ck = math.cos(ai), math.cos(aj), math.cos(ak) cc, cs = ci * ck, ci * sk sc, ss = si * ck, si * sk M = np.identity(4) if repetition: M[i, i] = cj M[i, j] = sj * si M[i, k] = sj * ci M[j, i] = sj * sk M[j, j] = -cj * ss + cc M[j, k] = -cj * cs - sc M[k, i] = -sj * ck M[k, j] = cj * sc + cs M[k, k] = cj * cc - ss else: M[i, i] = cj * ck M[i, j] = sj * sc - cs M[i, k] = sj * cc + ss M[j, i] = cj * sk M[j, j] = sj * ss + cc M[j, k] = sj * cs - sc M[k, i] = -sj M[k, j] = cj * si M[k, k] = cj * ci return M
[docs] def sphere2cart(r, theta, phi): """Spherical to Cartesian coordinates. This is the standard physics convention where `theta` is the inclination (polar) angle, and `phi` is the azimuth angle. Imagine a sphere with center (0,0,0). Orient it with the z axis running south-north, the y axis running west-east and the x axis from posterior to anterior. `theta` (the inclination angle) is the angle to rotate from the z-axis (the zenith) around the y-axis, towards the x axis. Thus the rotation is counter-clockwise from the point of view of positive y. `phi` (azimuth) gives the angle of rotation around the z-axis towards the y axis. The rotation is counter-clockwise from the point of view of positive z. Equivalently, given a point P on the sphere, with coordinates x, y, z, `theta` is the angle between P and the z-axis, and `phi` is the angle between the projection of P onto the XY plane, and the X axis. Geographical nomenclature designates theta as 'co-latitude', and phi as 'longitude' Parameters ---------- r : array_like radius theta : array_like inclination or polar angle phi : array_like azimuth angle Returns ------- x : array x coordinate(s) in Cartesian space y : array y coordinate(s) in Cartesian space z : array z coordinate Notes ----- See these pages: * http://en.wikipedia.org/wiki/Spherical_coordinate_system * http://mathworld.wolfram.com/SphericalCoordinates.html for excellent discussion of the many different conventions possible. Here we use the physics conventions, used in the wikipedia page. Derivations of the formulae are simple. Consider a vector x, y, z of length r (norm of x, y, z). The inclination angle (theta) can be found from: cos(theta) == z / r -> z == r * cos(theta). This gives the hypotenuse of the projection onto the XY plane, which we will call Q. Q == r*sin(theta). Now x / Q == cos(phi) -> x == r * sin(theta) * cos(phi) and so on. We have deliberately named this function ``sphere2cart`` rather than ``sph2cart`` to distinguish it from the Matlab function of that name, because the Matlab function uses an unusual convention for the angles that we did not want to replicate. The Matlab function is trivial to implement with the formulae given in the Matlab help. """ sin_theta = np.sin(theta) x = r * np.cos(phi) * sin_theta y = r * np.sin(phi) * sin_theta z = r * np.cos(theta) x, y, z = np.broadcast_arrays(x, y, z) return x, y, z
[docs] def cart2sphere(x, y, z): r"""Return angles for Cartesian 3D coordinates `x`, `y`, and `z`. See doc for ``sphere2cart`` for angle conventions and derivation of the formulae. $0\le\theta\mathrm{(theta)}\le\pi$ and $-\pi\le\phi\mathrm{(phi)}\le\pi$ Parameters ---------- x : array_like x coordinate in Cartesian space y : array_like y coordinate in Cartesian space z : array_like z coordinate Returns ------- r : array radius theta : array inclination (polar) angle phi : array azimuth angle """ r = np.sqrt(x * x + y * y + z * z) theta = np.arccos(np.divide(z, r, where=r > 0)) theta = np.where(r > 0, theta, 0.0) phi = np.arctan2(y, x) r, theta, phi = np.broadcast_arrays(r, theta, phi) return r, theta, phi
[docs] def translate(translation): """Return transformation matrix for translation array. Parameters ---------- translation : ndarray translation in x, y and z directions. Returns ------- translation : ndarray (4, 4) Numpy array of shape 4,4 containing translation parameter in the last column of the matrix. Examples -------- >>> import numpy as np; import fury >>> tran = np.array([0.3, 0.2, 0.25]) >>> transform = fury.transform.translate(tran) >>> transform array([[1. , 0. , 0. , 0.3 ], [0. , 1. , 0. , 0.2 ], [0. , 0. , 1. , 0.25], [0. , 0. , 0. , 1. ]]) """ iden = np.identity(4) translation = np.append(translation, 0).reshape(-1, 1) t = np.array( [[0, 0, 0, 1], [0, 0, 0, 1], [0, 0, 0, 1], [0, 0, 0, 1]], np.float32, ) translation = np.multiply(t, translation) translation = np.add(iden, translation) return translation
[docs] def rotate(quat): """Return transformation matrix for rotation quaternion. Parameters ---------- quat : ndarray (4, ) rotation quaternion. Returns ------- rotation_mat : ndarray (4, 4) Transformation matrix of shape (4, 4) to rotate a vector. Examples -------- >>> import numpy as np; import fury >>> quat = np.array([0.259, 0.0, 0.0, 0.966]) >>> rotation = fury.transform.rotate(quat) >>> rotation array([[ 1. , 0. , 0. , 0. ], [ 0. , 0.86586979, -0.50026944, 0. ], [ 0. , 0.50026944, 0.86586979, 0. ], [ 0. , 0. , 0. , 1. ]]) """ iden = np.identity(3) rotation_mat = Rot.from_quat(quat).as_matrix() iden = np.append(iden, [[0, 0, 0]]).reshape(-1, 3) rotation_mat = np.dot(iden, rotation_mat) iden = np.array([[0, 0, 0, 1]]).reshape(-1, 1) rotation_mat = np.concatenate((rotation_mat, iden), axis=1) return rotation_mat
[docs] def scale(scales): """Return transformation matrix for scales array. Parameters ---------- scales : ndarray scales in x, y and z directions. Returns ------- scale_mat : ndarray (4, 4) Numpy array of shape 4,4 containing elements of scale matrix along the diagonal. Examples -------- >>> import numpy as np; import fury >>> scales = np.array([2.0, 1.0, 0.5]) >>> transform = fury.transform.scale(scales) >>> transform array([[2. , 0. , 0. , 0. ], [0. , 1. , 0. , 0. ], [0. , 0. , 0.5, 0. ], [0. , 0. , 0. , 1. ]]) """ scale_mat = np.identity(4) scales = np.append(scales, [1]) for i in range(len(scales)): scale_mat[i][i] = scales[i] return scale_mat
[docs] def apply_transformation(vertices, transformation): """Multiplying transformation matrix with vertices Parameters ---------- vertices : ndarray (n, 3) vertices of the mesh transformation : ndarray (4, 4) transformation matrix Returns ------- vertices : ndarray (n, 3) transformed vertices of the mesh """ shape = vertices.shape temp = np.full((shape[0], 1), 1) vertices = np.concatenate((vertices, temp), axis=1) vertices = np.dot(transformation, vertices.T) vertices = vertices.T vertices = vertices[:, : shape[1]] return vertices
[docs] def transform_from_matrix(matrix): """Returns translation, rotation and scale arrays from transformation matrix. Parameters ---------- matrix : ndarray (4, 4) the transformation matrix of shape 4*4 Returns ------- translate : ndarray (3, ) translation component from the transformation matrix rotate : ndarray (4, ) rotation component from the transformation matrix scale : ndarray (3, ) scale component from the transformation matrix. """ translate = matrix[:, -1:].reshape((-1,))[:-1] temp = matrix[:, :3][:3] sx = np.linalg.norm(temp[:, :1]) sy = np.linalg.norm(temp[:, 1:-1]) sz = np.linalg.norm(temp[:, -1:]) scale = np.array([sx, sy, sz]) rot_matrix = temp / scale[None, :] rotation = Rot.from_matrix(rot_matrix) rot_vec = rotation.as_rotvec() angle = np.linalg.norm(rot_vec) rotation = [np.rad2deg(angle), *rot_vec] return translate, rotation, scale