[docs]defset_input(vtk_object,inp):""" Generic input function which takes into account VTK 5 or 6 Parameters ---------- vtk_object: vtk object inp: vtkPolyData or vtkImageData or vtkAlgorithmOutput Returns ------- vtk_object Notes ------- This can be used in the following way:: from fury.utils import set_input poly_mapper = set_input(vtk.vtkPolyDataMapper(), poly_data) """ifisinstance(inp,vtk.vtkPolyData) \
orisinstance(inp,vtk.vtkImageData):vtk_object.SetInputData(inp)elifisinstance(inp,vtk.vtkAlgorithmOutput):vtk_object.SetInputConnection(inp)vtk_object.Update()returnvtk_object
[docs]defnumpy_to_vtk_points(points):""" Numpy points array to a vtk points array Parameters ---------- points : ndarray Returns ------- vtk_points : vtkPoints() """vtk_points=vtk.vtkPoints()vtk_points.SetData(numpy_support.numpy_to_vtk(np.asarray(points),deep=True))returnvtk_points
[docs]defnumpy_to_vtk_colors(colors):""" Numpy color array to a vtk color array Parameters ---------- colors: ndarray Returns ------- vtk_colors : vtkDataArray Notes ----- If colors are not already in UNSIGNED_CHAR you may need to multiply by 255. Examples -------- >>> import numpy as np >>> from fury.utils import numpy_to_vtk_colors >>> rgb_array = np.random.rand(100, 3) >>> vtk_colors = numpy_to_vtk_colors(255 * rgb_array) """vtk_colors=numpy_support.numpy_to_vtk(np.asarray(colors),deep=True,array_type=vtk.VTK_UNSIGNED_CHAR)returnvtk_colors
defmap_coordinates_3d_4d(input_array,indices):""" Evaluate the input_array data at the given indices using trilinear interpolation Parameters ---------- input_array : ndarray, 3D or 4D array indices : ndarray Returns ------- output : ndarray 1D or 2D array """ifinput_array.ndim<=2orinput_array.ndim>=5:raiseValueError("Input array can only be 3d or 4d")ifinput_array.ndim==3:returnmap_coordinates(input_array,indices.T,order=1)ifinput_array.ndim==4:values_4d=[]foriinrange(input_array.shape[-1]):values_tmp=map_coordinates(input_array[...,i],indices.T,order=1)values_4d.append(values_tmp)returnnp.ascontiguousarray(np.array(values_4d).T)
[docs]deflines_to_vtk_polydata(lines,colors=None):""" Create a vtkPolyData with lines and colors Parameters ---------- lines : list list of N curves represented as 2D ndarrays colors : array (N, 3), list of arrays, tuple (3,), array (K,), None If None then a standard orientation colormap is used for every line. If one tuple of color is used. Then all streamlines will have the same colour. If an array (N, 3) is given, where N is equal to the number of lines. Then every line is coloured with a different RGB color. If a list of RGB arrays is given then every point of every line takes a different color. If an array (K, 3) is given, where K is the number of points of all lines then every point is colored with a different RGB color. If an array (K,) is given, where K is the number of points of all lines then these are considered as the values to be used by the colormap. If an array (L,) is given, where L is the number of streamlines then these are considered as the values to be used by the colormap per streamline. If an array (X, Y, Z) or (X, Y, Z, 3) is given then the values for the colormap are interpolated automatically using trilinear interpolation. Returns ------- poly_data : vtkPolyData is_colormap : bool, true if the input color array was a colormap """# Get the 3d points_arraypoints_array=np.vstack(lines)nb_lines=len(lines)nb_points=len(points_array)lines_range=range(nb_lines)# Get lines_array in vtk input formatlines_array=[]# Using np.intp (instead of int64), because of a bug in numpy:# https://github.com/nipy/dipy/pull/789# https://github.com/numpy/numpy/issues/4384points_per_line=np.zeros([nb_lines],np.intp)current_position=0foriinlines_range:current_len=len(lines[i])points_per_line[i]=current_lenend_position=current_position+current_lenlines_array+=[current_len]lines_array+=range(current_position,end_position)current_position=end_positionlines_array=np.array(lines_array)# Set Points to vtk array formatvtk_points=numpy_to_vtk_points(points_array)# Set Lines to vtk array formatvtk_lines=vtk.vtkCellArray()vtk_lines.GetData().DeepCopy(numpy_support.numpy_to_vtk(lines_array))vtk_lines.SetNumberOfCells(nb_lines)is_colormap=False# Get colors_array (reformat to have colors for each points)# - if/else tested and work in normal simple caseifcolorsisNone:# set automatic rgb colorscols_arr=line_colors(lines)colors_mapper=np.repeat(lines_range,points_per_line,axis=0)vtk_colors=numpy_to_vtk_colors(255*cols_arr[colors_mapper])else:cols_arr=np.asarray(colors)ifcols_arr.dtype==np.object:# colors is a list of colorsvtk_colors=numpy_to_vtk_colors(255*np.vstack(colors))else:iflen(cols_arr)==nb_points:ifcols_arr.ndim==1:# values for every pointvtk_colors=numpy_support.numpy_to_vtk(cols_arr,deep=True)is_colormap=Trueelifcols_arr.ndim==2:# map color to each pointvtk_colors=numpy_to_vtk_colors(255*cols_arr)elifcols_arr.ndim==1:iflen(cols_arr)==nb_lines:# values for every streamlinecols_arrx=[]for(i,value)inenumerate(colors):cols_arrx+=lines[i].shape[0]*[value]cols_arrx=np.array(cols_arrx)vtk_colors=numpy_support.numpy_to_vtk(cols_arrx,deep=True)is_colormap=Trueelse:# the same colors for all pointsvtk_colors=numpy_to_vtk_colors(np.tile(255*cols_arr,(nb_points,1)))elifcols_arr.ndim==2:# map color to each linecolors_mapper=np.repeat(lines_range,points_per_line,axis=0)vtk_colors=numpy_to_vtk_colors(255*cols_arr[colors_mapper])else:# colormap# get colors for each vertexcols_arr=map_coordinates_3d_4d(cols_arr,points_array)vtk_colors=numpy_support.numpy_to_vtk(cols_arr,deep=True)is_colormap=Truevtk_colors.SetName("Colors")# Create the poly_datapoly_data=vtk.vtkPolyData()poly_data.SetPoints(vtk_points)poly_data.SetLines(vtk_lines)poly_data.GetPointData().SetScalars(vtk_colors)returnpoly_data,is_colormap
defget_polydata_lines(line_polydata):""" vtk polydata to a list of lines ndarrays Parameters ---------- line_polydata : vtkPolyData Returns ------- lines : list List of N curves represented as 2D ndarrays """lines_vertices=numpy_support.vtk_to_numpy(line_polydata.GetPoints().GetData())lines_idx=numpy_support.vtk_to_numpy(line_polydata.GetLines().GetData())lines=[]current_idx=0whilecurrent_idx<len(lines_idx):line_len=lines_idx[current_idx]next_idx=current_idx+line_len+1line_range=lines_idx[current_idx+1:next_idx]lines+=[lines_vertices[line_range]]current_idx=next_idxreturnlinesdefget_polydata_triangles(polydata):""" get triangles (ndarrays Nx3 int) from a vtk polydata Parameters ---------- polydata : vtkPolyData Returns ------- output : array (N, 3) triangles """vtk_polys=numpy_support.vtk_to_numpy(polydata.GetPolys().GetData())assert((vtk_polys[::4]==3).all())# test if its really trianglesreturnnp.vstack([vtk_polys[1::4],vtk_polys[2::4],vtk_polys[3::4]]).Tdefget_polydata_vertices(polydata):""" get vertices (ndarrays Nx3 int) from a vtk polydata Parameters ---------- polydata : vtkPolyData Returns ------- output : array (N, 3) points, represented as 2D ndarrays """returnnumpy_support.vtk_to_numpy(polydata.GetPoints().GetData())defget_polydata_normals(polydata):""" get vertices normal (ndarrays Nx3 int) from a vtk polydata Parameters ---------- polydata : vtkPolyData Returns ------- output : array (N, 3) Normals, represented as 2D ndarrays (Nx3). None if there are no normals in the vtk polydata. """vtk_normals=polydata.GetPointData().GetNormals()ifvtk_normalsisNone:returnNoneelse:returnnumpy_support.vtk_to_numpy(vtk_normals)defget_polydata_colors(polydata):""" get points color (ndarrays Nx3 int) from a vtk polydata Parameters ---------- polydata : vtkPolyData Returns ------- output : array (N, 3) Colors. None if no normals in the vtk polydata. """vtk_colors=polydata.GetPointData().GetScalars()ifvtk_colorsisNone:returnNoneelse:returnnumpy_support.vtk_to_numpy(vtk_colors)
[docs]defset_polydata_triangles(polydata,triangles):""" set polydata triangles with a numpy array (ndarrays Nx3 int) Parameters ---------- polydata : vtkPolyData triangles : array (N, 3) triangles, represented as 2D ndarrays (Nx3) """vtk_triangles=np.hstack(np.c_[np.ones(len(triangles)).astype(np.int)*3,triangles])vtk_triangles=numpy_support.numpy_to_vtkIdTypeArray(vtk_triangles,deep=True)vtk_cells=vtk.vtkCellArray()vtk_cells.SetCells(len(triangles),vtk_triangles)polydata.SetPolys(vtk_cells)returnpolydata
[docs]defset_polydata_vertices(polydata,vertices):""" set polydata vertices with a numpy array (ndarrays Nx3 int) Parameters ---------- polydata : vtkPolyData vertices : vertices, represented as 2D ndarrays (Nx3) """vtk_points=vtk.vtkPoints()vtk_points.SetData(numpy_support.numpy_to_vtk(vertices,deep=True))polydata.SetPoints(vtk_points)returnpolydata
defset_polydata_normals(polydata,normals):""" set polydata normals with a numpy array (ndarrays Nx3 int) Parameters ---------- polydata : vtkPolyData normals : normals, represented as 2D ndarrays (Nx3) (one per vertex) """vtk_normals=numpy_support.numpy_to_vtk(normals,deep=True)polydata.GetPointData().SetNormals(vtk_normals)returnpolydatadefset_polydata_colors(polydata,colors):""" set polydata colors with a numpy array (ndarrays Nx3 int) Parameters ---------- polydata : vtkPolyData colors : colors, represented as 2D ndarrays (Nx3) colors are uint8 [0,255] RGB for each points """vtk_colors=numpy_support.numpy_to_vtk(colors,deep=True,array_type=vtk.VTK_UNSIGNED_CHAR)vtk_colors.SetNumberOfComponents(3)vtk_colors.SetName("RGB")polydata.GetPointData().SetScalars(vtk_colors)returnpolydatadefupdate_polydata_normals(polydata):""" generate and update polydata normals Parameters ---------- polydata : vtkPolyData """normals_gen=set_input(vtk.vtkPolyDataNormals(),polydata)normals_gen.ComputePointNormalsOn()normals_gen.ComputeCellNormalsOn()normals_gen.SplittingOff()# normals_gen.FlipNormalsOn()# normals_gen.ConsistencyOn()# normals_gen.AutoOrientNormalsOn()normals_gen.Update()vtk_normals=normals_gen.GetOutput().GetPointData().GetNormals()polydata.GetPointData().SetNormals(vtk_normals)defget_polymapper_from_polydata(polydata):""" get vtkPolyDataMapper from a vtkPolyData Parameters ---------- polydata : vtkPolyData Returns ------- poly_mapper : vtkPolyDataMapper """poly_mapper=set_input(vtk.vtkPolyDataMapper(),polydata)poly_mapper.ScalarVisibilityOn()poly_mapper.InterpolateScalarsBeforeMappingOn()poly_mapper.Update()poly_mapper.StaticOn()returnpoly_mapperdefget_actor_from_polymapper(poly_mapper):""" get vtkActor from a vtkPolyDataMapper Parameters ---------- poly_mapper : vtkPolyDataMapper Returns ------- actor : vtkActor """actor=vtk.vtkActor()actor.SetMapper(poly_mapper)actor.GetProperty().BackfaceCullingOn()actor.GetProperty().SetInterpolationToPhong()returnactordefget_actor_from_polydata(polydata):""" get vtkActor from a vtkPolyData Parameters ---------- polydata : vtkPolyData Returns ------- actor : vtkActor """poly_mapper=get_polymapper_from_polydata(polydata)returnget_actor_from_polymapper(poly_mapper)
[docs]defapply_affine(aff,pts):"""Apply affine matrix `aff` to points `pts`. Returns result of application of `aff` to the *right* of `pts`. The coordinate dimension of `pts` should be the last. For the 3D case, `aff` will be shape (4,4) and `pts` will have final axis length 3 - maybe it will just be N by 3. The return value is the transformed points, in this case:: res = np.dot(aff[:3,:3], pts.T) + aff[:3,3:4] transformed_pts = res.T This routine is more general than 3D, in that `aff` can have any shape (N,N), and `pts` can have any shape, as long as the last dimension is for the coordinates, and is therefore length N-1. Parameters ---------- aff : (N, N) array-like Homogenous affine, for 3D points, will be 4 by 4. Contrary to first appearance, the affine will be applied on the left of `pts`. pts : (..., N-1) array-like Points, where the last dimension contains the coordinates of each point. For 3D, the last dimension will be length 3. Returns ------- transformed_pts : (..., N-1) array transformed points Notes ----- Copied from nibabel to remove dependency. Examples -------- >>> aff = np.array([[0,2,0,10],[3,0,0,11],[0,0,4,12],[0,0,0,1]]) >>> pts = np.array([[1,2,3],[2,3,4],[4,5,6],[6,7,8]]) >>> apply_affine(aff, pts) #doctest: +ELLIPSIS array([[14, 14, 24], [16, 17, 28], [20, 23, 36], [24, 29, 44]]...) Just to show that in the simple 3D case, it is equivalent to: >>> (np.dot(aff[:3,:3], pts.T) + aff[:3,3:4]).T #doctest: +ELLIPSIS array([[14, 14, 24], [16, 17, 28], [20, 23, 36], [24, 29, 44]]...) But `pts` can be a more complicated shape: >>> pts = pts.reshape((2,2,3)) >>> apply_affine(aff, pts) #doctest: +ELLIPSIS array([[[14, 14, 24], [16, 17, 28]], <BLANKLINE> [[20, 23, 36], [24, 29, 44]]]...) """aff=np.asarray(aff)pts=np.asarray(pts)shape=pts.shapepts=pts.reshape((-1,shape[-1]))# rzs == rotations, zooms, shearsrzs=aff[:-1,:-1]trans=aff[:-1,-1]res=np.dot(pts,rzs.T)+trans[None,:]returnres.reshape(shape)