"""Module dedicated for basic primitive."""
import math
from os.path import join as pjoin
import numpy as np
from packaging.version import parse
from scipy.spatial import ConvexHull
from scipy.version import short_version
from fury.data import DATA_DIR
from fury.decorators import warn_on_args_to_kwargs
from fury.transform import cart2sphere, sphere2cart
from fury.utils import fix_winding_order
SCIPY_1_4_PLUS = parse(short_version) >= parse("1.4.0")
SPHERE_FILES = {
    "symmetric362": pjoin(DATA_DIR, "evenly_distributed_sphere_362.npz"),
    "symmetric642": pjoin(DATA_DIR, "evenly_distributed_sphere_642.npz"),
    "symmetric724": pjoin(DATA_DIR, "evenly_distributed_sphere_724.npz"),
    "repulsion724": pjoin(DATA_DIR, "repulsion724.npz"),
    "repulsion100": pjoin(DATA_DIR, "repulsion100.npz"),
    "repulsion200": pjoin(DATA_DIR, "repulsion200.npz"),
}
[docs]
def faces_from_sphere_vertices(vertices):
    """Triangulate a set of vertices on the sphere.
    Parameters
    ----------
    vertices : (M, 3) ndarray
        XYZ coordinates of vertices on the sphere.
    Returns
    -------
    faces : (N, 3) ndarray
        Indices into vertices; forms triangular faces.
    """
    hull = ConvexHull(vertices, qhull_options="Qbb Qc")
    faces = np.ascontiguousarray(hull.simplices)
    if len(vertices) < 2**16:
        return np.asarray(faces, np.uint16)
    else:
        return faces 
[docs]
@warn_on_args_to_kwargs()
def repeat_primitive_function(
    func, centers, *, func_args=None, directions=(1, 0, 0), colors=(1, 0, 0), scales=1
):
    """Repeat Vertices and triangles of a specific primitive function.
    It could be seen as a glyph. The primitive function should generate and
    return vertices and faces
    Parameters
    ----------
    func : callable
        primitive functions
    centers : ndarray, shape (N, 3)
        Superquadrics positions
    func_args : args
        primitive functions arguments/parameters
    directions : ndarray, shape (N, 3) or tuple (3,), optional
        The orientation vector of the cone.
    colors : ndarray (N,3) or (N, 4) or tuple (3,) or tuple (4,)
        RGB or RGBA (for opacity) R, G, B and A should be at the range [0, 1]
    scales : ndarray, shape (N) or (N,3) or float or int, optional
        The height of the cone.
    Returns
    -------
    big_vertices: ndarray
        Expanded vertices at the centers positions
    big_triangles: ndarray
        Expanded triangles that composed our shape to duplicate
    big_colors : ndarray
        Expanded colors applied to all vertices/faces
    """
    if func_args is None:
        func_args = []
    # Get faces
    _, faces = func()
    if len(func_args) == 1:
        func_args = np.squeeze(np.array([func_args] * centers.shape[0]))
    elif len(func_args) != centers.shape[0]:
        raise IOError(
            "sq_params should 1 or equal to the numbers \
                        of centers"
        )
    vertices = np.concatenate([func(i)[0] for i in func_args])
    return repeat_primitive(
        vertices,
        faces,
        centers,
        directions=directions,
        colors=colors,
        scales=scales,
        have_tiled_verts=True,
    ) 
[docs]
@warn_on_args_to_kwargs()
def repeat_primitive(
    vertices,
    faces,
    centers,
    *,
    directions=None,
    colors=(1, 0, 0),
    scales=1,
    have_tiled_verts=False,
):
    """Repeat Vertices and triangles of a specific primitive shape.
    It could be seen as a glyph.
    Parameters
    ----------
    vertices: ndarray
        vertices coords to duplicate at the centers positions
    triangles: ndarray
        triangles that composed our shape to duplicate
    centers : ndarray, shape (N, 3)
        Superquadrics positions
    directions : ndarray, shape (N, 3) or tuple (3,), optional
        The orientation vector of the cone.
    colors : ndarray (N,3) or (N, 4) or tuple (3,) or tuple (4,)
        RGB or RGBA (for opacity) R, G, B and A should be at the range [0, 1]
    scales : ndarray, shape (N) or (N,3) or float or int, optional
        The height of the cone.
    have_tiled_verts : bool
        option to control if we need to duplicate vertices of a shape or not
    Returns
    -------
    big_vertices: ndarray
        Expanded vertices at the centers positions
    big_triangles: ndarray
        Expanded triangles that composed our shape to duplicate
    big_colors : ndarray
        Expanded colors applied to all vertices/faces
    big_centers : ndarray
        Expanded centers for all vertices/faces
    """
    # duplicated vertices if needed
    if not have_tiled_verts:
        vertices = np.tile(vertices, (centers.shape[0], 1))
    big_vertices = vertices
    # Get unit shape
    unit_verts_size = vertices.shape[0] // centers.shape[0]
    unit_triangles_size = faces.shape[0]
    # scale them
    if not isinstance(scales, np.ndarray):
        scales = np.array(scales)
    if scales.ndim == 1:
        if scales.size == centers.shape[0]:
            scales = np.repeat(scales, unit_verts_size, axis=0)
            scales = scales.reshape((big_vertices.shape[0], 1))
    elif scales.ndim == 2:
        scales = np.repeat(scales, unit_verts_size, axis=0)
    big_vertices *= scales
    # update triangles
    big_triangles = np.array(np.tile(faces, (centers.shape[0], 1)), dtype=np.int32)
    big_triangles += np.repeat(
        np.arange(0, centers.shape[0] * unit_verts_size, step=unit_verts_size),
        unit_triangles_size,
        axis=0,
    ).reshape((big_triangles.shape[0], 1))
    @warn_on_args_to_kwargs()
    def normalize_input(arr, *, arr_name=""):
        if (
            isinstance(arr, (tuple, list, np.ndarray))
            and len(arr) in [3, 4]
            and not all(isinstance(i, (list, tuple, np.ndarray)) for i in arr)
        ):
            return np.array([arr] * centers.shape[0])
        elif isinstance(arr, np.ndarray) and len(arr) == 1:
            return np.repeat(arr, centers.shape[0], axis=0)
        elif arr is None:
            return np.array([])
        elif len(arr) != len(centers):
            msg = "{} size should be 1 or ".format(arr_name)
            msg += "equal to the numbers of centers"
            raise IOError(msg)
        else:
            return np.array(arr)
    # update colors
    colors = normalize_input(colors, arr_name="colors")
    big_colors = np.repeat(colors, unit_verts_size, axis=0)
    big_colors *= 255
    # update orientations
    directions = normalize_input(directions, arr_name="directions")
    for pts, dirs in enumerate(directions):
        # Normal vector of the object.
        dir_abs = np.linalg.norm(dirs)
        if dir_abs:
            normal = np.array([1.0, 0.0, 0.0])
            dirs = dirs / dir_abs
            v = np.cross(normal, dirs)
            c = np.dot(normal, dirs)
            v1, v2, v3 = v
            Vmat = np.array([[0, -v3, v2], [v3, 0, -v1], [-v2, v1, 0]])
            if c == -1.0:
                rotation_matrix = -np.eye(3, dtype=np.float64)
            else:
                h = 1 / (1 + c)
                rotation_matrix = (
                    np.eye(3, dtype=np.float64) + Vmat + (Vmat.dot(Vmat) * h)
                )
        else:
            rotation_matrix = np.identity(3)
        big_vertices[pts * unit_verts_size : (pts + 1) * unit_verts_size] = np.dot(
            rotation_matrix[:3, :3],
            big_vertices[pts * unit_verts_size : (pts + 1) * unit_verts_size].T,
        ).T
    # apply centers position
    big_centers = np.repeat(centers, unit_verts_size, axis=0)
    big_vertices += big_centers
    return big_vertices, big_triangles, big_colors, big_centers 
[docs]
def prim_square():
    """Return vertices and triangles for a square geometry.
    Returns
    -------
    vertices: ndarray
        4 vertices coords that composed our square
    triangles: ndarray
        2 triangles that composed our square
    """
    vertices = np.array(
        [[-0.5, -0.5, 0.0], [-0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, -0.5, 0.0]]
    )
    triangles = np.array([[0, 1, 2], [2, 3, 0]], dtype="i8")
    return vertices, triangles 
[docs]
def prim_box():
    """Return vertices and triangle for a box geometry.
    Returns
    -------
    vertices: ndarray
        8 vertices coords that composed our box
    triangles: ndarray
        12 triangles that composed our box
    """
    vertices = np.array(
        [
            [-0.5, -0.5, -0.5],
            [-0.5, -0.5, 0.5],
            [-0.5, 0.5, -0.5],
            [-0.5, 0.5, 0.5],
            [0.5, -0.5, -0.5],
            [0.5, -0.5, 0.5],
            [0.5, 0.5, -0.5],
            [0.5, 0.5, 0.5],
        ]
    )
    triangles = np.array(
        [
            [0, 6, 4],
            [0, 2, 6],
            [0, 3, 2],
            [0, 1, 3],
            [2, 7, 6],
            [2, 3, 7],
            [4, 6, 7],
            [4, 7, 5],
            [0, 4, 5],
            [0, 5, 1],
            [1, 5, 7],
            [1, 7, 3],
        ],
        dtype="i8",
    )
    return vertices, triangles 
[docs]
@warn_on_args_to_kwargs()
def prim_sphere(*, name="symmetric362", gen_faces=False, phi=None, theta=None):
    """Provide vertices and triangles of the spheres.
    Parameters
    ----------
    name : str, optional
        which sphere - one of:
        * 'symmetric362'
        * 'symmetric642'
        * 'symmetric724'
        * 'repulsion724'
        * 'repulsion100'
        * 'repulsion200'
    gen_faces : bool, optional
        If True, triangulate a set of vertices on the sphere to get the faces.
        Otherwise, we load the saved faces from a file. Default: False
    phi : int, optional
        Set the number of points in the latitude direction
    theta : int, optional
        Set the number of points in the longitude direction
    Returns
    -------
    vertices: ndarray
        vertices coords that composed our sphere
    triangles: ndarray
        triangles that composed our sphere
    Examples
    --------
    >>> import numpy as np
    >>> from fury.primitive import prim_sphere
    >>> verts, faces = prim_sphere('symmetric362')
    >>> verts.shape == (362, 3)
    True
    >>> faces.shape == (720, 3)
    True
    """
    if phi is None or theta is None:
        fname = SPHERE_FILES.get(name)
        if fname is None:
            raise ValueError('No sphere called "%s"' % name)
        res = np.load(fname)
        verts = res["vertices"].copy()
        faces = faces_from_sphere_vertices(verts) if gen_faces else res["faces"]
        faces = fix_winding_order(res["vertices"], faces, clockwise=True)
        return verts, faces
    else:
        phi = phi if phi >= 3 else 3
        theta = theta if theta >= 3 else 3
        phi_indices, theta_indices = np.arange(0, phi), np.arange(1, theta - 1)
        # phi and theta angles are same as standard physics convention
        phi_angles = 2 * np.pi * phi_indices / phi
        theta_angles = np.pi * theta_indices / (theta - 1)
        # combinations of all phi and theta angles
        mesh = np.array(np.meshgrid(phi_angles, theta_angles))
        combs = mesh.T.reshape(-1, 2)
        _angles = np.array([[1, 1], [0, np.pi], [np.pi / 2, -np.pi / 2]])
        _points = np.array(sphere2cart(_angles[0], _angles[1], _angles[2])).T
        x, y, z = sphere2cart(1, combs[:, 1:], combs[:, :1])
        x = np.reshape(np.append(x, _points[:, :1]), (-1,))
        y = np.reshape(np.append(y, _points[:, 1:2]), (-1,))
        z = np.reshape(np.append(z, _points[:, -1:]), (-1,))
        verts = np.vstack([x, y, z]).T
        faces = faces_from_sphere_vertices(verts)
        faces = fix_winding_order(verts, faces, clockwise=True)
        return verts, faces 
[docs]
def prim_superquadric(roundness=(1, 1), sphere_name="symmetric362"):
    """Provide vertices and triangles of a superquadrics.
    Parameters
    ----------
    roundness : tuple, optional
        parameters (Phi and Theta) that control the shape of the superquadric
    sphere_name : str, optional
        which sphere - one of:
        * 'symmetric362'
        * 'symmetric642'
        * 'symmetric724'
        * 'repulsion724'
        * 'repulsion100'
        * 'repulsion200'
    Returns
    -------
    vertices: ndarray
        vertices coords that composed our sphere
    triangles: ndarray
        triangles that composed our sphere
    Examples
    --------
    >>> import numpy as np
    >>> from fury.primitive import prim_superquadric
    >>> verts, faces = prim_superquadric(roundness=(1, 1))
    >>> verts.shape == (362, 3)
    True
    >>> faces.shape == (720, 3)
    True
    """
    def _fexp(x, p):
        """Return a different kind of exponentiation."""
        return np.sign(x) * (np.abs(x) ** p)
    sphere_verts, sphere_triangles = prim_sphere(name=sphere_name)
    _, sphere_phi, sphere_theta = cart2sphere(*sphere_verts.T)
    phi, theta = roundness
    x = _fexp(np.sin(sphere_phi), phi) * _fexp(np.cos(sphere_theta), theta)
    y = _fexp(np.sin(sphere_phi), phi) * _fexp(np.sin(sphere_theta), theta)
    z = _fexp(np.cos(sphere_phi), phi)
    xyz = np.vstack([x, y, z]).T
    vertices = np.ascontiguousarray(xyz)
    return vertices, sphere_triangles 
[docs]
def prim_tetrahedron():
    """Return vertices and triangles for a tetrahedron.
    This shape has a side length of two units.
    Returns
    -------
    pyramid_vert: numpy.ndarray
        4 vertices coordinates
    triangles: numpy.ndarray
        4 triangles representing the tetrahedron
    """
    pyramid_vert = np.array(
        [[0.5, 0.5, 0.5], [0.5, -0.5, -0.5], [-0.5, 0.5, -0.5], [-0.5, -0.5, 0.5]]
    )
    pyramid_triag = np.array([[2, 0, 1], [0, 2, 3], [0, 3, 1], [1, 3, 2]], dtype="i8")
    return pyramid_vert, pyramid_triag 
[docs]
def prim_icosahedron():
    """Return vertices and triangles for icosahedron.
    Returns
    -------
    icosahedron_vertices: numpy.ndarray
        12 vertices coordinates to the icosahedron
    icosahedron_mesh: numpy.ndarray
        20 triangles representing the tetrahedron
    """
    phi = (1 + math.sqrt(5)) / 2.0
    icosahedron_vertices = np.array(
        [
            [-1.0, 0.0, phi],
            [0.0, phi, 1.0],
            [1.0, 0.0, phi],
            [-phi, 1.0, 0.0],
            [0.0, phi, -1.0],
            [phi, 1.0, 0.0],
            [-phi, -1.0, 0.0],
            [0.0, -phi, 1.0],
            [phi, -1.0, 0.0],
            [-1.0, 0.0, -phi],
            [0.0, -phi, -1.0],
            [1.0, 0.0, -phi],
        ]
    )
    icosahedron_mesh = np.array(
        [
            [1, 0, 2],
            [2, 5, 1],
            [5, 4, 1],
            [3, 1, 4],
            [0, 1, 3],
            [0, 6, 3],
            [9, 3, 6],
            [8, 2, 7],
            [2, 0, 7],
            [0, 7, 6],
            [5, 2, 8],
            [11, 5, 8],
            [11, 4, 5],
            [9, 11, 4],
            [4, 3, 9],
            [11, 10, 8],
            [8, 10, 7],
            [6, 7, 10],
            [10, 9, 6],
            [9, 10, 11],
        ],
        dtype="i8",
    )
    return icosahedron_vertices, icosahedron_mesh 
[docs]
def prim_rhombicuboctahedron():
    """Return vertices and triangles for rhombicuboctahedron.
    Returns
    -------
    vertices: numpy.ndarray
        24 vertices coordinates to the rhombicuboctahedron
    triangles: numpy.ndarray
        44 triangles representing the rhombicuboctahedron
    """
    phi = (math.sqrt(2) - 1) / 2.0
    vertices = np.array(
        [
            [0.5, phi, phi],
            [0.5, phi, -phi],
            [0.5, -phi, phi],
            [0.5, -phi, -phi],
            [phi, 0.5, phi],
            [phi, 0.5, -phi],
            [-phi, 0.5, phi],
            [-phi, 0.5, -phi],
            [phi, phi, 0.5],
            [phi, -phi, 0.5],
            [-phi, phi, 0.5],
            [-phi, -phi, 0.5],
            [-0.5, phi, phi],
            [-0.5, phi, -phi],
            [-0.5, -phi, phi],
            [-0.5, -phi, -phi],
            [phi, -0.5, phi],
            [phi, -0.5, -phi],
            [-phi, -0.5, phi],
            [-phi, -0.5, -phi],
            [phi, phi, -0.5],
            [phi, -phi, -0.5],
            [-phi, phi, -0.5],
            [-phi, -phi, -0.5],
        ]
    )
    triangles = np.array(
        [
            [0, 1, 2],
            [1, 3, 2],
            [0, 4, 5],
            [0, 5, 1],
            [6, 4, 7],
            [4, 5, 7],
            [0, 8, 4],
            [0, 2, 8],
            [2, 9, 8],
            [8, 9, 10],
            [9, 11, 10],
            [6, 8, 10],
            [6, 8, 4],
            [6, 10, 12],
            [6, 12, 7],
            [7, 12, 13],
            [10, 11, 14],
            [10, 14, 12],
            [12, 14, 15],
            [12, 15, 13],
            [2, 3, 16],
            [3, 17, 16],
            [2, 16, 9],
            [9, 16, 11],
            [11, 16, 18],
            [18, 16, 19],
            [16, 17, 19],
            [11, 18, 14],
            [14, 18, 19],
            [14, 19, 15],
            [1, 21, 3],
            [1, 20, 21],
            [3, 21, 17],
            [17, 21, 23],
            [17, 23, 19],
            [21, 20, 23],
            [23, 20, 22],
            [19, 23, 15],
            [15, 23, 13],
            [13, 23, 22],
            [13, 22, 7],
            [22, 7, 5],
            [22, 20, 5],
            [20, 1, 5],
        ],
        dtype="i8",
    )
    triangles = fix_winding_order(vertices, triangles, clockwise=True)
    return vertices, triangles 
[docs]
@warn_on_args_to_kwargs()
def prim_star(*, dim=2):
    """Return vertices and triangle for star geometry.
    Parameters
    ----------
    dim: int
        Represents the dimension of the wanted star
    Returns
    -------
    vertices: ndarray
        vertices coords that composed our star
    triangles: ndarray
        Triangles that composed our star
    """
    if dim == 2:
        vert = np.array(
            [
                [-2.0, -3.0, 0.0],
                [0.0, -2.0, 0.0],
                [3.0, -3.0, 0.0],
                [2.0, -1.0, 0.0],
                [3.0, 1.0, 0.0],
                [1.0, 1.0, 0.0],
                [0.0, 3.0, 0.0],
                [-1.0, 1.0, 0.0],
                [-3.0, 1.0, 0.0],
                [-2.0, -1.0, 0.0],
            ]
        )
        triangles = np.array(
            [
                [1, 9, 0],
                [1, 2, 3],
                [3, 4, 5],
                [5, 6, 7],
                [7, 8, 9],
                [1, 9, 3],
                [3, 7, 9],
                [3, 5, 7],
            ],
            dtype="i8",
        )
    if dim == 3:
        vert = np.array(
            [
                [-2.0, -3.0, 0.0],
                [0.0, -2, 0.0],
                [3.0, -3.0, 0.0],
                [2.0, -1.0, 0.0],
                [3.0, 0.5, 0.0],
                [1.0, 0.5, 0.0],
                [0, 3.0, 0.0],
                [-1.0, 0.5, 0.0],
                [-3.0, 0.5, 0.0],
                [-2.0, -1.0, 0.0],
                [0.0, 0.0, 0.5],
                [0.0, 0.0, -0.5],
            ]
        )
        triangles = np.array(
            [
                [1, 9, 0],
                [1, 2, 3],
                [3, 4, 5],
                [5, 6, 7],
                [7, 8, 9],
                [1, 9, 3],
                [3, 7, 9],
                [3, 5, 7],
                [1, 0, 10],
                [0, 9, 10],
                [10, 9, 8],
                [7, 8, 10],
                [6, 7, 10],
                [5, 6, 10],
                [5, 10, 4],
                [10, 3, 4],
                [3, 10, 2],
                [10, 1, 2],
                [1, 0, 11],
                [0, 9, 11],
                [11, 9, 8],
                [7, 8, 10],
                [6, 7, 11],
                [5, 6, 11],
                [5, 10, 4],
                [11, 3, 4],
                [3, 11, 2],
                [11, 1, 2],
            ],
            dtype="i8",
        )
    return vert, triangles 
[docs]
def prim_triangularprism():
    """Return vertices and triangle for a regular triangular prism.
    Returns
    -------
    vertices: ndarray
        vertices coords that compose our prism
    triangles: ndarray
        triangles that compose our prism
    """
    # Local variable to represent the square root of three rounded
    # to 7 decimal places
    three = float("{:.7f}".format(math.sqrt(3)))
    vertices = np.array(
        [
            [0, -1 / three, 1 / 2],
            [-1 / 2, 1 / 2 / three, 1 / 2],
            [1 / 2, 1 / 2 / three, 1 / 2],
            [-1 / 2, 1 / 2 / three, -1 / 2],
            [1 / 2, 1 / 2 / three, -1 / 2],
            [0, -1 / three, -1 / 2],
        ]
    )
    triangles = np.array(
        [
            [0, 1, 2],
            [2, 1, 3],
            [2, 3, 4],
            [1, 0, 5],
            [1, 5, 3],
            [0, 2, 4],
            [0, 4, 5],
            [5, 4, 3],
        ]
    )
    triangles = fix_winding_order(vertices, triangles, clockwise=True)
    return vertices, triangles 
[docs]
def prim_pentagonalprism():
    """Return vertices and triangles for a pentagonal prism.
    Returns
    -------
    vertices: ndarray
        vertices coords that compose our prism
    triangles: ndarray
        triangles that compose our prism
    """
    # Local variable to represent the square root of five
    five = math.sqrt(5)
    onec = (five - 1) / 4.0
    twoc = (five + 1) / 4.0
    sone = (math.sqrt(10 + (2 * five))) / 4.0
    stwo = (math.sqrt(10 - (2 * five))) / 4.0
    vertices = np.array(
        [
            [stwo / 2, twoc / 2, -0.5],
            [sone / 2, -onec / 2, -0.5],
            [0, -1 / 2, -0.5],
            [-sone / 2, -onec / 2, -0.5],
            [-stwo / 2, twoc / 2, -0.5],
            [stwo / 2, twoc / 2, 0.5],
            [sone / 2, -onec / 2, 0.5],
            [0, -1 / 2, 0.5],
            [-sone / 2, -onec / 2, 0.5],
            [-stwo / 2, twoc / 2, 0.5],
        ]
    )
    triangles = np.array(
        [
            [9, 5, 4],
            [4, 5, 0],
            [5, 6, 0],
            [0, 6, 1],
            [6, 7, 1],
            [1, 7, 2],
            [7, 8, 2],
            [2, 8, 3],
            [8, 9, 3],
            [3, 9, 4],
            [0, 1, 4],
            [1, 4, 3],
            [1, 3, 2],
            [5, 6, 9],
            [6, 8, 9],
            [6, 7, 8],
        ]
    )
    triangles = fix_winding_order(vertices, triangles, clockwise=True)
    return vertices, triangles 
[docs]
def prim_octagonalprism():
    """Return vertices and triangle for an octagonal prism.
    Returns
    -------
    vertices: ndarray
        vertices coords that compose our prism
    triangles: ndarray
        triangles that compose our prism
    """
    # Local variable to represent the square root of two rounded
    # to 7 decimal places
    two = float("{:.7f}".format(math.sqrt(2)))
    vertices = np.array(
        [
            [-1, -(1 + two), -1],
            [1, -(1 + two), -1],
            [1, (1 + two), -1],
            [-1, (1 + two), -1],
            [-(1 + two), -1, -1],
            [(1 + two), -1, -1],
            [(1 + two), 1, -1],
            [-(1 + two), 1, -1],
            [-1, -(1 + two), 1],
            [1, -(1 + two), 1],
            [1, (1 + two), 1],
            [-1, (1 + two), 1],
            [-(1 + two), -1, 1],
            [(1 + two), -1, 1],
            [(1 + two), 1, 1],
            [-(1 + two), 1, 1],
        ]
    )
    triangles = np.array(
        [
            [0, 8, 9],
            [9, 1, 0],
            [5, 13, 9],
            [9, 1, 5],
            [3, 11, 10],
            [10, 2, 3],
            [2, 10, 14],
            [14, 6, 2],
            [5, 13, 14],
            [14, 6, 5],
            [7, 15, 11],
            [11, 3, 7],
            [7, 15, 12],
            [12, 4, 7],
            [0, 8, 12],
            [12, 4, 0],
            [0, 3, 4],
            [3, 4, 7],
            [0, 3, 1],
            [1, 2, 3],
            [2, 5, 6],
            [5, 2, 1],
            [8, 11, 12],
            [11, 12, 15],
            [8, 11, 9],
            [9, 10, 11],
            [10, 13, 14],
            [13, 10, 9],
        ],
        dtype="u8",
    )
    vertices /= 4
    triangles = fix_winding_order(vertices, triangles, clockwise=True)
    return vertices, triangles 
[docs]
def prim_frustum():
    """Return vertices and triangle for a square frustum prism.
    Returns
    -------
    vertices: ndarray
        vertices coords that compose our prism
    triangles: ndarray
        triangles that compose our prism
    """
    vertices = np.array(
        [
            [-0.5, -0.5, 0.5],
            [0.5, -0.5, 0.5],
            [0.5, 0.5, 0.5],
            [-0.5, 0.5, 0.5],
            [-1, -1, -0.5],
            [1, -1, -0.5],
            [1, 1, -0.5],
            [-1, 1, -0.5],
        ]
    )
    triangles = np.array(
        [
            [4, 6, 5],
            [6, 4, 7],
            [0, 2, 1],
            [2, 0, 3],
            [4, 3, 0],
            [3, 4, 7],
            [7, 2, 3],
            [2, 7, 6],
            [6, 1, 2],
            [1, 6, 5],
            [5, 0, 1],
            [0, 5, 4],
        ],
        dtype="u8",
    )
    vertices /= 2
    triangles = fix_winding_order(vertices, triangles, clockwise=True)
    return vertices, triangles 
[docs]
@warn_on_args_to_kwargs()
def prim_cylinder(*, radius=0.5, height=1, sectors=36, capped=True):
    """Return vertices and triangles for a cylinder.
    Parameters
    ----------
    radius: float
        Radius of the cylinder
    height: float
        Height of the cylinder
    sectors: int
        Sectors in the cylinder
    capped: bool
        Whether the cylinder is capped at both ends or open
    Returns
    -------
    vertices: ndarray
        vertices coords that compose our cylinder
    triangles: ndarray
        triangles that compose our cylinder
    """
    if not isinstance(sectors, int):
        raise TypeError("Only integers are allowed for sectors parameter")
    if not sectors > 7:
        raise ValueError("Sectors parameter should be greater than 7")
    sector_step = 2 * math.pi / sectors
    unit_circle_vertices = []
    # generate a unit circle on YZ plane
    for i in range(sectors + 1):
        sector_angle = i * sector_step
        unit_circle_vertices.append(0)
        unit_circle_vertices.append(math.cos(sector_angle))
        unit_circle_vertices.append(math.sin(sector_angle))
    vertices = []
    # generate vertices for a cylinder
    for i in range(2):
        h = -height / 2 + i * height
        k = 0
        for _ in range(sectors + 1):
            uy = unit_circle_vertices[k + 1]
            uz = unit_circle_vertices[k + 2]
            # position vector
            vertices.append(h)
            vertices.append(uy * radius)
            vertices.append(uz * radius)
            k += 3
    # base and top circle vertices
    base_center_index = None
    top_center_index = None
    if capped:
        base_center_index = int(len(vertices) / 3)
        top_center_index = base_center_index + sectors + 1
        for i in range(2):
            h = -height / 2 + i * height
            vertices.append(h)
            vertices.append(0)
            vertices.append(0)
            k = 0
            for _ in range(sectors):
                uy = unit_circle_vertices[k + 1]
                uz = unit_circle_vertices[k + 2]
                # position vector
                vertices.append(h)
                vertices.append(uy * radius)
                vertices.append(uz * radius)
                k += 3
    if capped:
        vertices = np.array(vertices).reshape(2 * (sectors + 1) + 2 * sectors + 2, 3)
    else:
        vertices = np.array(vertices).reshape(2 * (sectors + 1), 3)
    triangles = []
    k1 = 0
    k2 = sectors + 1
    # triangles for the side surface
    for _ in range(sectors):
        triangles.append(k1)
        triangles.append(k2)
        triangles.append(k1 + 1)
        triangles.append(k2)
        triangles.append(k2 + 1)
        triangles.append(k1 + 1)
        k1 += 1
        k2 += 1
    if capped:
        k = base_center_index + 1
        for i in range(sectors):
            if i < sectors - 1:
                triangles.append(base_center_index)
                triangles.append(k)
                triangles.append(k + 1)
            else:
                triangles.append(base_center_index)
                triangles.append(k)
                triangles.append(base_center_index + 1)
            k += 1
        k = top_center_index + 1
        for i in range(sectors):
            if i < sectors - 1:
                triangles.append(top_center_index)
                triangles.append(k + 1)
                triangles.append(k)
            else:
                triangles.append(top_center_index)
                triangles.append(top_center_index + 1)
                triangles.append(k)
            k += 1
    if capped:
        triangles = np.array(triangles).reshape(4 * sectors, 3)
    else:
        triangles = np.array(triangles).reshape(2 * sectors, 3)
    return vertices, triangles 
[docs]
@warn_on_args_to_kwargs()
def prim_arrow(
    *,
    height=1.0,
    resolution=10,
    tip_length=0.35,
    tip_radius=0.1,
    shaft_radius=0.03,
):
    """Return vertices and triangle for arrow geometry.
    Parameters
    ----------
    height : float
        The height of the arrow (default: 1.0).
    resolution : int
        The resolution of the arrow.
    tip_length : float
        The tip size of the arrow (default: 0.35)
    tip_radius : float
        the tip radius of the arrow (default: 0.1)
    shaft_radius : float
        The shaft radius of the arrow (default: 0.03)
    Returns
    -------
    vertices: ndarray
        vertices of the Arrow
    triangles: ndarray
        Triangles of the Arrow
    """
    shaft_height = height - tip_length
    all_faces = []
    shaft_outer_circle_down = []
    shaft_outer_circle_up = []
    tip_outer_circle = []
    # calculating vertices
    for i in range(resolution + 1):
        x = math.cos((i * 2) * math.pi / resolution)
        y = math.sin((i * 2) * math.pi / resolution)
        shaft_x = x * shaft_radius
        shaft_y = y * shaft_radius
        tip_x = x * tip_radius
        tip_y = y * tip_radius
        # lower shaft circle (d)
        shaft_outer_circle_down.append((0.0, shaft_x, shaft_y))
        # upper shaft circle (u)
        shaft_outer_circle_up.append((shaft_height, shaft_x, shaft_y))
        # tip outer circle
        tip_outer_circle.append((shaft_height, tip_x, tip_y))
    #  center, center at shaft height, center at overall height
    v1, v2, v3 = (0.0, 0.0, 0.0), (shaft_height, 0.0, 0.0), (height, 0.0, 0.0)
    all_verts = (
        [v1, v2, v3]
        + shaft_outer_circle_down
        + shaft_outer_circle_up
        + tip_outer_circle
    )
    offset = len(shaft_outer_circle_down)
    off_1 = 3
    off_2 = off_1 + offset
    off_3 = off_2 + offset
    # calculating triangles
    for i in range(resolution):
        # down circle  d[i] , 0, d[i + 1]
        all_faces.append((i + off_1 + 1, i + off_1, 0))
        # cylinder triangles 1 d[i], d[i + 1], u[i + 1]
        all_faces.append((i + off_2 + 1, i + off_1, i + off_1 + 1))
        # cylinder triangles 2 u[i + 1], u[i], d[i]
        all_faces.append((i + off_1, i + off_2 + 1, i + off_2))
        # tip circle u[i] , 1, d[i + 1]
        all_faces.append((i + off_3 + 1, i + off_3, 1))
        # tip cone t[i], t[i + 1], 2
        all_faces.append((2, i + off_3, i + off_3 + 1))
    vertices = np.asarray(all_verts)
    triangles = np.asarray(all_faces, dtype=int)
    return vertices, triangles 
[docs]
@warn_on_args_to_kwargs()
def prim_cone(*, radius=0.5, height=1, sectors=10):
    """Return vertices and triangle of a Cone.
    Parameters
    ----------
    radius: float, optional
        Radius of the cone
    height: float, optional
        Height of the cone
    sectors: int, optional
        Sectors in the cone
    Returns
    -------
    vertices: ndarray
        vertices coords that compose our cone
    triangles: ndarray
        triangles that compose our cone
    """
    if sectors < 3:
        raise ValueError("Sectors parameter should be greater than 2")
    sector_angles = 2 * np.pi / sectors * np.arange(sectors)
    # Circle in YZ plane
    h = height / 2.0
    x = np.full((sectors,), -h)
    y, z = radius * np.cos(sector_angles), radius * np.sin(sector_angles)
    x = np.concatenate((x, np.array([h, -h])))
    y = np.concatenate((y, np.array([0, 0])))
    z = np.concatenate((z, np.array([0, 0])))
    vertices = np.vstack(np.array([x, y, z])).T
    # index of base and top centers
    base_center_index = int(len(vertices) - 1)
    top_center_index = base_center_index - 1
    triangles = []
    for i in range(sectors):
        if not i + 1 == top_center_index:
            triangles.append(top_center_index)
            triangles.append(i)
            triangles.append(i + 1)
            triangles.append(base_center_index)
            triangles.append(i + 1)
            triangles.append(i)
        else:
            triangles.append(top_center_index)
            triangles.append(i)
            triangles.append(0)
            triangles.append(base_center_index)
            triangles.append(0)
            triangles.append(i)
    triangles = np.array(triangles).reshape(-1, 3)
    return vertices, triangles