.. note:: :class: sphx-glr-download-link-note Click :ref:`here <sphx_glr_download_auto_tutorials_01_introductory_viz_solar_system.py>` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_tutorials_01_introductory_viz_solar_system.py: ======================= Solar System Animation ======================= In this tutorial, we will create an animation of the solar system using textured spheres. We will also show how to manipulate the position of these sphere actors in a timer_callback function to simulate orbital motion. .. code-block:: default import numpy as np from fury import window, actor, utils, io import itertools from fury.data import read_viz_textures, fetch_viz_textures Create a scene to start. .. code-block:: default scene = window.Scene() Define information relevant for each planet actor including its texture name, relative position, and scale. .. code-block:: default planets_data = [{'filename': '8k_mercury.jpg', 'position': 7, 'scale': (.4, .4, .4)}, {'filename': '8k_venus_surface.jpg', 'position': 9, 'scale': (.6, .6, .6)}, {'filename': '1_earth_8k.jpg', 'position': 11, 'scale': (.4, .4, .4)}, {'filename': '8k_mars.jpg', 'position': 13, 'scale': (.8, .8, .8)}, {'filename': 'jupiter.jpg', 'position': 16, 'scale': (2, 2, 2)}, {'filename': '8k_saturn.jpg', 'position': 19, 'scale': (2, 2, 2)}, {'filename': '8k_saturn_ring_alpha.png', 'position': 19, 'scale': (3, .5, 3)}, {'filename': '2k_uranus.jpg', 'position': 22, 'scale': (1, 1, 1)}, {'filename': '2k_neptune.jpg', 'position': 25, 'scale': (1, 1, 1)}, {'filename': '8k_sun.jpg', 'position': 0, 'scale': (5, 5, 5)}] fetch_viz_textures() .. rst-class:: sphx-glr-script-out Out: .. code-block:: none Dataset is already in place. If you want to fetch it again please first remove the folder /Users/koudoro/.fury/textures To take advantage of the previously defined data structure we are going to create an auxiliary function that will load and apply the respective texture, set its respective properties (relative position and scale), and add the actor to a previously created scene. .. code-block:: default def init_planet(planet_data): """Initialize a planet actor. Parameters ---------- planet_data : dict The planet_data is a dictionary, and the keys are filename(texture), position and scale. Returns ------- planet_actor: actor The corresponding sphere actor with texture applied. """ planet_file = read_viz_textures(planet_data['filename']) planet_image = io.load_image(planet_file) planet_actor = actor.texture_on_sphere(planet_image) planet_actor.SetPosition(planet_data['position'], 0, 0) planet_actor.SetScale(planet_data['scale']) scene.add(planet_actor) return planet_actor Use the ``map`` function to create actors for each of the texture files in the ``planet_files`` list. Then, assign each actor to its corresponding actor in the list. .. code-block:: default planet_actor_list = list(map(init_planet, planets_data)) mercury_actor = planet_actor_list[0] venus_actor = planet_actor_list[1] earth_actor = planet_actor_list[2] mars_actor = planet_actor_list[3] jupiter_actor = planet_actor_list[4] saturn_actor = planet_actor_list[5] saturn_rings_actor = planet_actor_list[6] uranus_actor = planet_actor_list[7] neptune_actor = planet_actor_list[8] sun_actor = planet_actor_list[9] # Rotate this actor to correctly orient the texture utils.rotate(jupiter_actor, (90, 1, 0, 0)) Define the gravitational constant G, the orbital radii of each of the planets, and the central mass of the sun. The gravity and mass will be used to calculate the orbital position, so multiply these two together to create a new constant, which we will call miu. .. code-block:: default g_exponent = np.float_power(10, -11) g_constant = 6.673*g_exponent m_exponent = 1073741824 # np.power(10, 30) m_constant = 1.989*m_exponent miu = m_constant*g_constant Let's define two functions that will help us calculate the position of each planet as it orbits around the sun: ``get_orbit_period`` and ``get_orbital_position``, using the constant miu and the orbital radii of each planet. .. code-block:: default def get_orbit_period(radius): return 2 * np.pi * np.sqrt(np.power(radius, 3)/miu) def get_orbital_position(radius, time): orbit_period = get_orbit_period(radius) x = radius * np.cos((2*np.pi*time)/orbit_period) y = radius * np.sin((2*np.pi*time)/orbit_period) return x, y Let's change the camera position to visualize the planets better. .. code-block:: default scene.set_camera(position=(-20, 60, 100)) Next, create a ShowManager object. The ShowManager class is the interface between the scene, the window and the interactor. .. code-block:: default showm = window.ShowManager(scene, size=(900, 768), reset_camera=False, order_transparent=True) Next, let's focus on creating the animation. We can determine the duration of animation with using the ``counter``. Use itertools to avoid global variables. .. code-block:: default counter = itertools.count() Define one new function to use in ``timer_callback`` to update the planet positions ``update_planet_position``. .. code-block:: default def update_planet_position(r_planet, planet_actor, cnt): pos_planet = get_orbital_position(r_planet, cnt) planet_actor.SetPosition(pos_planet[0], 0, pos_planet[1]) return pos_planet ``calculate_path`` function is for calculating the path/orbit of every planet. .. code-block:: default def calculate_path(r_planet, c): planet_track = [[get_orbital_position(r_planet, i)[0], 0, get_orbital_position(r_planet, i)[1]] for i in range(c)] return planet_track First we are making a list that will contain radius from `planets_data`. Here we are not taking the radius of orbit/path for sun and saturn ring. And `planet_actors` will contain all the planet actors. .. code-block:: default r_planets = [p_data['position'] for p_data in planets_data if 'sun' not in p_data['filename'] if 'saturn_ring' not in p_data['filename']] planet_actors = [mercury_actor, venus_actor, earth_actor, mars_actor, jupiter_actor, saturn_actor, uranus_actor, neptune_actor] Here we are calculating and updating the path/orbit before animation starts. .. code-block:: default planet_tracks = [calculate_path(rplanet, rplanet*85) for rplanet in r_planets] This is for orbit visualization. We are using line actor for orbits. After creating an actor we add it to the scene. .. code-block:: default orbit_actor = actor.line(planet_tracks, colors=(1, 1, 1), linewidth=0.1) scene.add(orbit_actor) Define the ``timer_callback`` function, which controls what events happen at certain times, using the counter. Update the position of each planet actor using ``update_planet_position,`` assigning the x and y values of each planet's position with the newly calculated ones. .. code-block:: default def timer_callback(_obj, _event): cnt = next(counter) showm.render() for r_planet, planet_actor in zip(r_planets, planet_actors): # if the planet is saturn then we also need to update the position # of its rings. if planet_actor == saturn_actor: pos_saturn = update_planet_position(19, saturn_actor, cnt) saturn_rings_actor.SetPosition(pos_saturn[0], 0, pos_saturn[1]) else: update_planet_position(r_planet, planet_actor, cnt) if cnt == 2000: showm.exit() Watch the planets orbit the sun in your new animation! .. code-block:: default showm.initialize() showm.add_timer_callback(True, 5, timer_callback) showm.start() window.record(showm.scene, size=(900, 768), out_path="viz_solar_system_animation.png") .. image:: /auto_tutorials/01_introductory/images/sphx_glr_viz_solar_system_001.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 26.645 seconds) .. _sphx_glr_download_auto_tutorials_01_introductory_viz_solar_system.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: sphx-glr-download :download:`Download Python source code: viz_solar_system.py <viz_solar_system.py>` .. container:: sphx-glr-download :download:`Download Jupyter notebook: viz_solar_system.ipynb <viz_solar_system.ipynb>` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>`_