.. note:: :class: sphx-glr-download-link-note Click :ref:`here <sphx_glr_download_auto_examples_viz_helical_motion.py>` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_viz_helical_motion.py: ====================================================================== Motion of a charged particle in a combined magnetic and electric field ====================================================================== A charged particle follows a curved path in a magnetic field. In an electric field, the particle tends to accelerate in a direction parallel/antiparallel to the electric field depending on the nature of charge on the particle. In a combined electric and magnetic field, the particle moves along a helical path. In this animation, there's a magnetic and an electric field present in +x direction under whose influence the positively charged particle follows a helical path. Importing necessary modules .. code-block:: default from fury import window, actor, utils, ui import numpy as np import itertools Let's define some variable and their description: * `radius_particle`: radius of the point that will represent the particle (default = 0.08) * `initial_velocity`: initial velocity of the particle along +x (default = 0.09) * `acc`: acceleration of the particle along +x (due to the electric field) (default = 0.004) * `time`: time (default time i.e. time at beginning of the animation = 0) * `incre_time`: value by which time is incremented for each call of timer_callback (default = 0.09) * `angular_frq`: angular frequency (default = 0.1) * `phase_angle`: phase angle (default = 0.002) .. code-block:: default radius_particle = 0.08 initial_velocity = 0.09 acc = 0.004 time = 0 incre_time = 0.09 angular_frq = 0.1 phase_angle = 0.002 Creating a scene object and configuring the camera's position .. code-block:: default scene = window.Scene() scene.zoom(1.2) scene.set_camera(position=(10, 12.5, 19), focal_point=(3.0, 0.0, 0.0), view_up=(0.0, 0.0, 0.0)) showm = window.ShowManager(scene, size=(800, 600), reset_camera=True, order_transparent=True) showm.initialize() Creating a blue colored arrow which shows the direction of magnetic field and electric field. .. code-block:: default color_arrow = window.colors.blue # color of the arrow can be manipulated centers = np.array([[0, 0, 0]]) directions = np.array([[1, 0, 0]]) heights = np.array([8]) arrow_actor = actor.arrow(centers, directions, color_arrow, heights, resolution=20, tip_length=0.06, tip_radius=0.012, shaft_radius=0.005) scene.add(arrow_actor) Initializing the initial coordinates of the particle .. code-block:: default x = initial_velocity*time + 0.5*acc*(time**2) y = np.sin(angular_frq*time + phase_angle) z = np.cos(angular_frq*time + phase_angle) Initializing point actor which will represent the charged particle .. code-block:: default color_particle = window.colors.red # color of particle can be manipulated pts = np.array([[x, y, z]]) charge_actor = actor.point(pts, color_particle, point_radius=radius_particle) scene.add(charge_actor) vertices = utils.vertices_from_actor(charge_actor) vcolors = utils.colors_from_actor(charge_actor, 'colors') no_vertices_per_point = len(vertices) initial_vertices = vertices.copy() - \ np.repeat(pts, no_vertices_per_point, axis=0) Initializing text box to display the name of the animation .. code-block:: default tb = ui.TextBlock2D(bold=True, position=(100, 90)) m1 = "Motion of a charged particle in a " m2 = "combined electric and magnetic field" tb.message = m1 + m2 scene.add(tb) Initializing counter .. code-block:: default counter = itertools.count() end is used to decide when to end the animation .. code-block:: default end = 200 This will be useful for plotting path of the particle .. code-block:: default coor_1 = np.array([0, 0, 0]) Coordinates to be plotted are changed everytime timer_callback is called by using the update_coordinates function. The wave is rendered here. .. code-block:: default def timer_callback(_obj, _event): global pts, time, incre_time, coor_1 time += incre_time cnt = next(counter) x = initial_velocity*time + 0.5*acc*(time**2) y = np.sin(10*angular_frq*time + phase_angle) z = np.cos(10*angular_frq*time + phase_angle) pts = np.array([[x, y, z]]) vertices[:] = initial_vertices + \ np.repeat(pts, no_vertices_per_point, axis=0) utils.update_actor(charge_actor) # Plotting the path followed by the particle coor_2 = np.array([x, y, z]) coors = np.array([coor_1, coor_2]) coors = [coors] line_actor = actor.line(coors, window.colors.cyan, linewidth=3) scene.add(line_actor) coor_1 = coor_2 showm.render() # to end the animation if cnt == end: showm.exit() Run every 15 milliseconds .. code-block:: default showm.add_timer_callback(True, 15, timer_callback) showm.start() window.record(showm.scene, size=(800, 600), out_path="viz_helical_motion.png") .. image:: /auto_examples/images/sphx_glr_viz_helical_motion_001.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 3.760 seconds) .. _sphx_glr_download_auto_examples_viz_helical_motion.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: sphx-glr-download :download:`Download Python source code: viz_helical_motion.py <viz_helical_motion.py>` .. container:: sphx-glr-download :download:`Download Jupyter notebook: viz_helical_motion.ipynb <viz_helical_motion.ipynb>` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>`_