.. note::
:class: sphx-glr-download-link-note
Click :ref:`here <sphx_glr_download_auto_examples_viz_network.py>` to download the full example code
.. rst-class:: sphx-glr-example-title
.. _sphx_glr_auto_examples_viz_network.py:
=======================================================
Visualize Interdisciplinary map of the journals network
=======================================================
The goal of this app is to show an overview of the journals network structure
as a complex network. Each journal is shown as a node and their connections
indicates a citation between two of them.
First, let's import some useful functions
.. code-block:: default
from os.path import join as pjoin
from fury import actor, window, colormap as cmap
import numpy as np
Then let's download some available datasets.
.. code-block:: default
from fury.data.fetcher import fetch_viz_wiki_nw
files, folder = fetch_viz_wiki_nw()
categories_file, edges_file, positions_file = sorted(files.keys())
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
Dataset is already in place. If you want to fetch it again please first remove the folder /Users/koudoro/.fury/examples/wiki_nw
More information about complex networks can be found in this papers: https://arxiv.org/abs/0711.3199
We read our datasets
.. code-block:: default
positions = np.loadtxt(pjoin(folder, positions_file))
categories = np.loadtxt(pjoin(folder, categories_file), dtype=str)
edges = np.loadtxt(pjoin(folder, edges_file), dtype=np.int)
We attribute a color to each category of our dataset which correspond to our
nodes colors.
.. code-block:: default
category2index = {category: i
for i, category in enumerate(np.unique(categories))}
index2category = np.unique(categories)
categoryColors = cmap.distinguishable_colormap(nb_colors=len(index2category))
colors = np.array([categoryColors[category2index[category]]
for category in categories])
We define our node size
.. code-block:: default
radii = 1 + np.random.rand(len(positions))
Lets create our edges now. They will indicate a citation between two nodes.
OF course, the colors of each edges will be an interpolation between the two
node that it connects.
.. code-block:: default
edgesPositions = []
edgesColors = []
for source, target in edges:
edgesPositions.append(np.array([positions[source], positions[target]]))
edgesColors.append(np.array([colors[source], colors[target]]))
edgesPositions = np.array(edgesPositions)
edgesColors = np.average(np.array(edgesColors), axis=1)
Our data preparation is ready, it is time to visualize them all. We start to
build 2 actors that we represent our data : sphere_actor for the nodes and
lines_actor for the edges.
.. code-block:: default
sphere_actor = actor.sphere(centers=positions,
colors=colors,
radii=radii*0.5,
theta=8,
phi=8,
)
lines_actor = actor.line(edgesPositions,
colors=edgesColors,
opacity=0.1,
)
All actors need to be added in a scene, so we build one and add our
lines_actor and sphere_actor.
.. code-block:: default
scene = window.Scene()
scene.add(lines_actor)
scene.add(sphere_actor)
The final step ! Visualize and save the result of our creation! Please,
switch interactive variable to True if you want to visualize it.
.. code-block:: default
interactive = False
if interactive:
window.show(scene, size=(600, 600))
window.record(scene, out_path='journal_networks.png', size=(600, 600))
.. image:: /auto_examples/images/sphx_glr_viz_network_001.png
:class: sphx-glr-single-img
This example can be improved by adding some interactivy with slider,
picking, etc. Play with it, improve it!
.. rst-class:: sphx-glr-timing
**Total running time of the script:** ( 0 minutes 5.200 seconds)
.. _sphx_glr_download_auto_examples_viz_network.py:
.. only :: html
.. container:: sphx-glr-footer
:class: sphx-glr-footer-example
.. container:: sphx-glr-download
:download:`Download Python source code: viz_network.py <viz_network.py>`
.. container:: sphx-glr-download
:download:`Download Jupyter notebook: viz_network.ipynb <viz_network.ipynb>`
.. only:: html
.. rst-class:: sphx-glr-signature
`Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>`_