"""Module that provide actors to render."""
import os.path as op
import numpy as np
import vtk
from vtk.util import numpy_support
import fury.shaders as fs
from fury import layout
from fury.colormap import colormap_lookup_table, create_colormap, orient2rgb
from fury.utils import (lines_to_vtk_polydata, set_input, apply_affine,
set_polydata_vertices, set_polydata_triangles,
numpy_to_vtk_matrix, shallow_copy, rgb_to_vtk,
repeat_sources, get_actor_from_primitive)
from fury.io import load_image
import fury.primitive as fp
[docs]def slicer(data, affine=None, value_range=None, opacity=1.,
lookup_colormap=None, interpolation='linear', picking_tol=0.025):
"""Cut 3D scalar or rgb volumes into 2D images.
Parameters
----------
data : array, shape (X, Y, Z) or (X, Y, Z, 3)
A grayscale or rgb 4D volume as a numpy array. If rgb then values
expected on the range [0, 255].
affine : array, shape (4, 4)
Grid to space (usually RAS 1mm) transformation matrix. Default is None.
If None then the identity matrix is used.
value_range : None or tuple (2,)
If None then the values will be interpolated from (data.min(),
data.max()) to (0, 255). Otherwise from (value_range[0],
value_range[1]) to (0, 255).
opacity : float, optional
Opacity of 0 means completely transparent and 1 completely visible.
lookup_colormap : vtkLookupTable, optional
If None (default) then a grayscale map is created.
interpolation : string, optional
If 'linear' (default) then linear interpolation is used on the final
texture mapping. If 'nearest' then nearest neighbor interpolation is
used on the final texture mapping.
picking_tol : float, optional
The tolerance for the vtkCellPicker, specified as a fraction of
rendering window size.
Returns
-------
image_actor : ImageActor
An object that is capable of displaying different parts of the volume
as slices. The key method of this object is ``display_extent`` where
one can input grid coordinates and display the slice in space (or grid)
coordinates as calculated by the affine parameter.
"""
if value_range is None:
value_range = (data.min(), data.max())
if data.ndim != 3:
if data.ndim == 4:
if data.shape[3] != 3:
raise ValueError('Only RGB 3D arrays are currently supported.')
else:
nb_components = 3
else:
raise ValueError('Only 3D arrays are currently supported.')
else:
nb_components = 1
vol = data
im = vtk.vtkImageData()
I, J, K = vol.shape[:3]
im.SetDimensions(I, J, K)
# for now setting up for 1x1x1 but transformation comes later.
voxsz = (1., 1., 1.)
# im.SetOrigin(0,0,0)
im.SetSpacing(voxsz[2], voxsz[0], voxsz[1])
vtk_type = numpy_support.get_vtk_array_type(vol.dtype)
im.AllocateScalars(vtk_type, nb_components)
# im.AllocateScalars(vtk.VTK_UNSIGNED_CHAR, nb_components)
# copy data
# what I do below is the same as what is
# commented here but much faster
# for index in ndindex(vol.shape):
# i, j, k = index
# im.SetScalarComponentFromFloat(i, j, k, 0, vol[i, j, k])
vol = np.swapaxes(vol, 0, 2)
vol = np.ascontiguousarray(vol)
if nb_components == 1:
vol = vol.ravel()
else:
vol = np.reshape(vol, [np.prod(vol.shape[:3]), vol.shape[3]])
uchar_array = numpy_support.numpy_to_vtk(vol, deep=0)
im.GetPointData().SetScalars(uchar_array)
if affine is None:
affine = np.eye(4)
# Set the transform (identity if none given)
transform = vtk.vtkTransform()
transform_matrix = vtk.vtkMatrix4x4()
transform_matrix.DeepCopy((
affine[0][0], affine[0][1], affine[0][2], affine[0][3],
affine[1][0], affine[1][1], affine[1][2], affine[1][3],
affine[2][0], affine[2][1], affine[2][2], affine[2][3],
affine[3][0], affine[3][1], affine[3][2], affine[3][3]))
transform.SetMatrix(transform_matrix)
transform.Inverse()
# Set the reslicing
image_resliced = vtk.vtkImageReslice()
set_input(image_resliced, im)
image_resliced.SetResliceTransform(transform)
image_resliced.AutoCropOutputOn()
# Adding this will allow to support anisotropic voxels
# and also gives the opportunity to slice per voxel coordinates
RZS = affine[:3, :3]
zooms = np.sqrt(np.sum(RZS * RZS, axis=0))
image_resliced.SetOutputSpacing(*zooms)
image_resliced.SetInterpolationModeToLinear()
image_resliced.Update()
vtk_resliced_data = image_resliced.GetOutput()
ex1, ex2, ey1, ey2, ez1, ez2 = vtk_resliced_data.GetExtent()
resliced = numpy_support.vtk_to_numpy(
vtk_resliced_data.GetPointData().GetScalars())
# swap axes here
if data.ndim == 4:
if data.shape[-1] == 3:
resliced = resliced.reshape(ez2 + 1, ey2 + 1, ex2 + 1, 3)
if data.ndim == 3:
resliced = resliced.reshape(ez2 + 1, ey2 + 1, ex2 + 1)
class ImageActor(vtk.vtkImageActor):
def __init__(self):
self.picker = vtk.vtkCellPicker()
self.output = None
self.shape = None
self.outline_actor = None
def input_connection(self, output):
# outline only
outline = vtk.vtkOutlineFilter()
outline.SetInputData(vtk_resliced_data)
outline_mapper = vtk.vtkPolyDataMapper()
outline_mapper.SetInputConnection(outline.GetOutputPort())
self.outline_actor = vtk.vtkActor()
self.outline_actor.SetMapper(outline_mapper)
self.outline_actor.GetProperty().SetColor(1, 0.5, 0)
self.outline_actor.GetProperty().SetLineWidth(5)
self.outline_actor.GetProperty().SetRenderLinesAsTubes(True)
# crucial
self.GetMapper().SetInputConnection(output.GetOutputPort())
self.output = output
self.shape = (ex2 + 1, ey2 + 1, ez2 + 1)
def display_extent(self, x1, x2, y1, y2, z1, z2):
self.SetDisplayExtent(x1, x2, y1, y2, z1, z2)
self.Update()
# bounds = self.GetBounds()
# xmin, xmax, ymin, ymax, zmin, zmax = bounds
# line = np.array([[xmin, ymin, zmin]])
# self.outline_actor = actor.line()
def display(self, x=None, y=None, z=None):
if x is None and y is None and z is None:
self.display_extent(ex1, ex2, ey1, ey2, ez2//2, ez2//2)
if x is not None:
self.display_extent(x, x, ey1, ey2, ez1, ez2)
if y is not None:
self.display_extent(ex1, ex2, y, y, ez1, ez2)
if z is not None:
self.display_extent(ex1, ex2, ey1, ey2, z, z)
def resliced_array(self):
""" Returns resliced array as numpy array"""
resliced = numpy_support.vtk_to_numpy(
vtk_resliced_data.GetPointData().GetScalars())
# swap axes here
if data.ndim == 4:
if data.shape[-1] == 3:
resliced = resliced.reshape(ez2 + 1, ey2 + 1, ex2 + 1, 3)
if data.ndim == 3:
resliced = resliced.reshape(ez2 + 1, ey2 + 1, ex2 + 1)
resliced = np.swapaxes(resliced, 0, 2)
resliced = np.ascontiguousarray(resliced)
return resliced
def opacity(self, value):
self.GetProperty().SetOpacity(value)
def tolerance(self, value):
self.picker.SetTolerance(value)
def copy(self):
im_actor = ImageActor()
im_actor.input_connection(self.output)
im_actor.SetDisplayExtent(*self.GetDisplayExtent())
im_actor.opacity(self.GetOpacity())
im_actor.tolerance(self.picker.GetTolerance())
if interpolation == 'nearest':
im_actor.SetInterpolate(False)
else:
im_actor.SetInterpolate(True)
im_actor.GetMapper().BorderOn()
return im_actor
def shallow_copy(self):
# TODO rename copy to shallow_copy
self.copy()
r1, r2 = value_range
image_actor = ImageActor()
if nb_components == 1:
lut = lookup_colormap
if lookup_colormap is None:
# Create a black/white lookup table.
lut = colormap_lookup_table((r1, r2), (0, 0), (0, 0), (0, 1))
plane_colors = vtk.vtkImageMapToColors()
plane_colors.SetLookupTable(lut)
plane_colors.SetInputConnection(image_resliced.GetOutputPort())
plane_colors.Update()
image_actor.input_connection(plane_colors)
else:
image_actor.input_connection(image_resliced)
image_actor.display()
image_actor.opacity(opacity)
image_actor.tolerance(picking_tol)
if interpolation == 'nearest':
image_actor.SetInterpolate(False)
else:
image_actor.SetInterpolate(True)
image_actor.GetMapper().BorderOn()
return image_actor
[docs]def surface(vertices, faces=None, colors=None, smooth=None, subdivision=3):
"""Generates a surface actor from an array of vertices
The color and smoothness of the surface can be customized by specifying
the type of subdivision algorithm and the number of subdivisions.
Parameters
----------
vertices : array, shape (X, Y, Z)
The point cloud defining the surface.
faces : array
An array of precomputed triangulation for the point cloud.
It is an optional parameter, it is computed locally if None
colors : (N, 3) array
Specifies the colors associated with each vertex in the
vertices array.
Optional parameter, if not passed, all vertices
are colored white
smooth : string - "loop" or "butterfly"
Defines the type of subdivision to be used
for smoothing the surface
subdivision : integer, default = 3
Defines the number of subdivisions to do for
each triangulation of the point cloud.
The higher the value, smoother the surface
but at the cost of higher computation
Returns
-------
surface_actor : vtkActor
A vtkActor visualizing the final surface
computed from the point cloud is returned.
"""
from scipy.spatial import Delaunay
points = vtk.vtkPoints()
points.SetData(numpy_support.numpy_to_vtk(vertices))
triangle_poly_data = vtk.vtkPolyData()
triangle_poly_data.SetPoints(points)
if colors is not None:
triangle_poly_data.GetPointData().\
SetScalars(numpy_support.numpy_to_vtk(colors))
if faces is None:
tri = Delaunay(vertices[:, [0, 1]])
faces = np.array(tri.simplices, dtype='i8')
if faces.shape[1] == 3:
triangles = np.empty((faces.shape[0], 4), dtype=np.int64)
triangles[:, -3:] = faces
triangles[:, 0] = 3
else:
triangles = faces
if not triangles.flags['C_CONTIGUOUS'] or triangles.dtype != 'int64':
triangles = np.ascontiguousarray(triangles, 'int64')
cells = vtk.vtkCellArray()
cells.SetCells(triangles.shape[0],
numpy_support.numpy_to_vtkIdTypeArray(triangles, deep=True))
triangle_poly_data.SetPolys(cells)
clean_poly_data = vtk.vtkCleanPolyData()
clean_poly_data.SetInputData(triangle_poly_data)
mapper = vtk.vtkPolyDataMapper()
surface_actor = vtk.vtkActor()
if smooth is None:
mapper.SetInputData(triangle_poly_data)
surface_actor.SetMapper(mapper)
elif smooth == "loop":
smooth_loop = vtk.vtkLoopSubdivisionFilter()
smooth_loop.SetNumberOfSubdivisions(subdivision)
smooth_loop.SetInputConnection(clean_poly_data.GetOutputPort())
mapper.SetInputConnection(smooth_loop.GetOutputPort())
surface_actor.SetMapper(mapper)
elif smooth == "butterfly":
smooth_butterfly = vtk.vtkButterflySubdivisionFilter()
smooth_butterfly.SetNumberOfSubdivisions(subdivision)
smooth_butterfly.SetInputConnection(clean_poly_data.GetOutputPort())
mapper.SetInputConnection(smooth_butterfly.GetOutputPort())
surface_actor.SetMapper(mapper)
return surface_actor
[docs]def contour_from_roi(data, affine=None,
color=np.array([1, 0, 0]), opacity=1):
"""Generate surface actor from a binary ROI.
The color and opacity of the surface can be customized.
Parameters
----------
data : array, shape (X, Y, Z)
An ROI file that will be binarized and displayed.
affine : array, shape (4, 4)
Grid to space (usually RAS 1mm) transformation matrix. Default is None.
If None then the identity matrix is used.
color : (1, 3) ndarray
RGB values in [0,1].
opacity : float
Opacity of surface between 0 and 1.
Returns
-------
contour_assembly : vtkAssembly
ROI surface object displayed in space
coordinates as calculated by the affine parameter.
"""
if data.ndim != 3:
raise ValueError('Only 3D arrays are currently supported.')
nb_components = 1
data = (data > 0) * 1
vol = np.interp(data, xp=[data.min(), data.max()], fp=[0, 255])
vol = vol.astype('uint8')
im = vtk.vtkImageData()
di, dj, dk = vol.shape[:3]
im.SetDimensions(di, dj, dk)
voxsz = (1., 1., 1.)
# im.SetOrigin(0,0,0)
im.SetSpacing(voxsz[2], voxsz[0], voxsz[1])
im.AllocateScalars(vtk.VTK_UNSIGNED_CHAR, nb_components)
# copy data
vol = np.swapaxes(vol, 0, 2)
vol = np.ascontiguousarray(vol)
vol = vol.ravel()
uchar_array = numpy_support.numpy_to_vtk(vol, deep=0)
im.GetPointData().SetScalars(uchar_array)
if affine is None:
affine = np.eye(4)
# Set the transform (identity if none given)
transform = vtk.vtkTransform()
transform_matrix = vtk.vtkMatrix4x4()
transform_matrix.DeepCopy((
affine[0][0], affine[0][1], affine[0][2], affine[0][3],
affine[1][0], affine[1][1], affine[1][2], affine[1][3],
affine[2][0], affine[2][1], affine[2][2], affine[2][3],
affine[3][0], affine[3][1], affine[3][2], affine[3][3]))
transform.SetMatrix(transform_matrix)
transform.Inverse()
# Set the reslicing
image_resliced = vtk.vtkImageReslice()
set_input(image_resliced, im)
image_resliced.SetResliceTransform(transform)
image_resliced.AutoCropOutputOn()
# Adding this will allow to support anisotropic voxels
# and also gives the opportunity to slice per voxel coordinates
rzs = affine[:3, :3]
zooms = np.sqrt(np.sum(rzs * rzs, axis=0))
image_resliced.SetOutputSpacing(*zooms)
image_resliced.SetInterpolationModeToLinear()
image_resliced.Update()
skin_extractor = vtk.vtkContourFilter()
skin_extractor.SetInputData(image_resliced.GetOutput())
skin_extractor.SetValue(0, 1)
skin_normals = vtk.vtkPolyDataNormals()
skin_normals.SetInputConnection(skin_extractor.GetOutputPort())
skin_normals.SetFeatureAngle(60.0)
skin_mapper = vtk.vtkPolyDataMapper()
skin_mapper.SetInputConnection(skin_normals.GetOutputPort())
skin_mapper.ScalarVisibilityOff()
skin_actor = vtk.vtkActor()
skin_actor.SetMapper(skin_mapper)
skin_actor.GetProperty().SetOpacity(opacity)
skin_actor.GetProperty().SetColor(color[0], color[1], color[2])
return skin_actor
[docs]def contour_from_label(data, affine=None, color=None):
"""Generate surface actor from a labeled Array.
The color and opacity of individual surfaces can be customized.
Parameters
----------
data : array, shape (X, Y, Z)
A labeled array file that will be binarized and displayed.
affine : array, shape (4, 4)
Grid to space (usually RAS 1mm) transformation matrix. Default is None.
If None then the identity matrix is used.
color : (N, 3) or (N, 4) ndarray
RGB/RGBA values in [0,1]. Default is None.
If None then random colors are used.
Alpha channel is set to 1 by default.
Returns
-------
contour_assembly : vtkAssembly
Array surface object displayed in space
coordinates as calculated by the affine parameter
in the order of their roi ids.
"""
unique_roi_id = np.delete(np.unique(data), 0)
nb_surfaces = len(unique_roi_id)
unique_roi_surfaces = vtk.vtkAssembly()
if color is None:
color = np.random.rand(nb_surfaces, 3)
elif color.shape != (nb_surfaces, 3) and color.shape != (nb_surfaces, 4):
raise ValueError("Incorrect color array shape")
if color.shape == (nb_surfaces, 4):
opacity = color[:, -1]
color = color[:, :-1]
else:
opacity = np.ones((nb_surfaces, 1)).astype(np.float)
for roi_id in unique_roi_id:
roi_data = np.isin(data, roi_id).astype(np.int)
roi_surface = contour_from_roi(roi_data, affine,
color=color[int(roi_id)-1],
opacity=opacity[int(roi_id)-1])
unique_roi_surfaces.AddPart(roi_surface)
return unique_roi_surfaces
[docs]def streamtube(lines, colors=None, opacity=1, linewidth=0.1, tube_sides=9,
lod=True, lod_points=10 ** 4, lod_points_size=3,
spline_subdiv=None, lookup_colormap=None):
"""Use streamtubes to visualize polylines
Parameters
----------
lines : list
list of N curves represented as 2D ndarrays
colors : array (N, 3), list of arrays, tuple (3,), array (K,)
If None or False, a standard orientation colormap is used for every
line.
If one tuple of color is used. Then all streamlines will have the same
colour.
If an array (N, 3) is given, where N is equal to the number of lines.
Then every line is coloured with a different RGB color.
If a list of RGB arrays is given then every point of every line takes
a different color.
If an array (K, 3) is given, where K is the number of points of all
lines then every point is colored with a different RGB color.
If an array (K,) is given, where K is the number of points of all
lines then these are considered as the values to be used by the
colormap.
If an array (L,) is given, where L is the number of streamlines then
these are considered as the values to be used by the colormap per
streamline.
If an array (X, Y, Z) or (X, Y, Z, 3) is given then the values for the
colormap are interpolated automatically using trilinear interpolation.
opacity : float, optional
Takes values from 0 (fully transparent) to 1 (opaque). Default is 1.
linewidth : float, optional
Default is 0.01.
tube_sides : int, optional
Default is 9.
lod : bool, optional
Use vtkLODActor(level of detail) rather than vtkActor. Default is True.
Level of detail actors do not render the full geometry when the
frame rate is low.
lod_points : int, optional
Number of points to be used when LOD is in effect. Default is 10000.
lod_points_size : int, optional
Size of points when lod is in effect. Default is 3.
spline_subdiv : int, optional
Number of splines subdivision to smooth streamtubes. Default is None.
lookup_colormap : vtkLookupTable, optional
Add a default lookup table to the colormap. Default is None which calls
:func:`fury.actor.colormap_lookup_table`.
Examples
--------
>>> import numpy as np
>>> from fury import actor, window
>>> scene = window.Scene()
>>> lines = [np.random.rand(10, 3), np.random.rand(20, 3)]
>>> colors = np.random.rand(2, 3)
>>> c = actor.streamtube(lines, colors)
>>> scene.add(c)
>>> #window.show(scene)
Notes
-----
Streamtubes can be heavy on GPU when loading many streamlines and
therefore, you may experience slow rendering time depending on system GPU.
A solution to this problem is to reduce the number of points in each
streamline. In Dipy we provide an algorithm that will reduce the number of
points on the straighter parts of the streamline but keep more points on
the curvier parts. This can be used in the following way::
from dipy.tracking.distances import approx_polygon_track
lines = [approx_polygon_track(line, 0.2) for line in lines]
Alternatively we suggest using the ``line`` actor which is much more
efficient.
See Also
--------
:func:`fury.actor.line`
"""
# Poly data with lines and colors
poly_data, color_is_scalar = lines_to_vtk_polydata(lines, colors)
next_input = poly_data
# Set Normals
poly_normals = set_input(vtk.vtkPolyDataNormals(), next_input)
poly_normals.ComputeCellNormalsOn()
poly_normals.ComputePointNormalsOn()
poly_normals.ConsistencyOn()
poly_normals.AutoOrientNormalsOn()
poly_normals.Update()
next_input = poly_normals.GetOutputPort()
# Spline interpolation
if (spline_subdiv is not None) and (spline_subdiv > 0):
spline_filter = set_input(vtk.vtkSplineFilter(), next_input)
spline_filter.SetSubdivideToSpecified()
spline_filter.SetNumberOfSubdivisions(spline_subdiv)
spline_filter.Update()
next_input = spline_filter.GetOutputPort()
# Add thickness to the resulting lines
tube_filter = set_input(vtk.vtkTubeFilter(), next_input)
tube_filter.SetNumberOfSides(tube_sides)
tube_filter.SetRadius(linewidth)
# TODO using the line above we will be able to visualize
# streamtubes of varying radius
# tube_filter.SetVaryRadiusToVaryRadiusByScalar()
tube_filter.CappingOn()
tube_filter.Update()
next_input = tube_filter.GetOutputPort()
# Poly mapper
poly_mapper = set_input(vtk.vtkPolyDataMapper(), next_input)
poly_mapper.ScalarVisibilityOn()
poly_mapper.SetScalarModeToUsePointFieldData()
poly_mapper.SelectColorArray("Colors")
poly_mapper.Update()
# Color Scale with a lookup table
if color_is_scalar:
if lookup_colormap is None:
lookup_colormap = colormap_lookup_table()
poly_mapper.SetLookupTable(lookup_colormap)
poly_mapper.UseLookupTableScalarRangeOn()
poly_mapper.Update()
# Set Actor
if lod:
actor = vtk.vtkLODActor()
actor.SetNumberOfCloudPoints(lod_points)
actor.GetProperty().SetPointSize(lod_points_size)
else:
actor = vtk.vtkActor()
actor.SetMapper(poly_mapper)
actor.GetProperty().SetInterpolationToPhong()
actor.GetProperty().BackfaceCullingOn()
actor.GetProperty().SetOpacity(opacity)
return actor
[docs]def line(lines, colors=None, opacity=1, linewidth=1,
spline_subdiv=None, lod=True, lod_points=10 ** 4, lod_points_size=3,
lookup_colormap=None, depth_cue=False, fake_tube=False):
""" Create an actor for one or more lines.
Parameters
------------
lines : list of arrays
colors : array (N, 3), list of arrays, tuple (3,), array (K,)
If None or False, a standard orientation colormap is used for every
line.
If one tuple of color is used. Then all streamlines will have the same
colour.
If an array (N, 3) is given, where N is equal to the number of lines.
Then every line is coloured with a different RGB color.
If a list of RGB arrays is given then every point of every line takes
a different color.
If an array (K, 3) is given, where K is the number of points of all
lines then every point is colored with a different RGB color.
If an array (K,) is given, where K is the number of points of all
lines then these are considered as the values to be used by the
colormap.
If an array (L,) is given, where L is the number of streamlines then
these are considered as the values to be used by the colormap per
streamline.
If an array (X, Y, Z) or (X, Y, Z, 3) is given then the values for the
colormap are interpolated automatically using trilinear interpolation.
opacity : float, optional
Takes values from 0 (fully transparent) to 1 (opaque). Default is 1.
linewidth : float, optional
Line thickness. Default is 1.
spline_subdiv : int, optional
Number of splines subdivision to smooth streamtubes. Default is None
which means no subdivision.
lod : bool, optional
Use vtkLODActor(level of detail) rather than vtkActor. Default is True.
Level of detail actors do not render the full geometry when the
frame rate is low.
lod_points : int, optional
Number of points to be used when LOD is in effect. Default is 10000.
lod_points_size : int
Size of points when lod is in effect. Default is 3.
lookup_colormap : vtkLookupTable, optional
Add a default lookup table to the colormap. Default is None which calls
:func:`fury.actor.colormap_lookup_table`.
depth_cue : boolean, optional
Add a size depth cue so that lines shrink with distance to the camera.
Works best with linewidth <= 1.
fake_tube: boolean, optional
Add shading to lines to approximate the look of tubes.
Returns
----------
v : vtkActor or vtkLODActor object
Line.
Examples
----------
>>> from fury import actor, window
>>> scene = window.Scene()
>>> lines = [np.random.rand(10, 3), np.random.rand(20, 3)]
>>> colors = np.random.rand(2, 3)
>>> c = actor.line(lines, colors)
>>> scene.add(c)
>>> #window.show(scene)
"""
# Poly data with lines and colors
poly_data, color_is_scalar = lines_to_vtk_polydata(lines, colors)
next_input = poly_data
# use spline interpolation
if (spline_subdiv is not None) and (spline_subdiv > 0):
spline_filter = set_input(vtk.vtkSplineFilter(), next_input)
spline_filter.SetSubdivideToSpecified()
spline_filter.SetNumberOfSubdivisions(spline_subdiv)
spline_filter.Update()
next_input = spline_filter.GetOutputPort()
poly_mapper = set_input(vtk.vtkPolyDataMapper(), next_input)
poly_mapper.ScalarVisibilityOn()
poly_mapper.SetScalarModeToUsePointFieldData()
poly_mapper.SelectColorArray("Colors")
poly_mapper.Update()
if depth_cue:
poly_mapper.SetGeometryShaderCode(fs.load("line.geom"))
@vtk.calldata_type(vtk.VTK_OBJECT)
def vtkShaderCallback(_caller, _event, calldata=None):
program = calldata
if program is not None:
program.SetUniformf("linewidth", linewidth)
poly_mapper.AddObserver(vtk.vtkCommand.UpdateShaderEvent,
vtkShaderCallback)
# Color Scale with a lookup table
if color_is_scalar:
if lookup_colormap is None:
lookup_colormap = colormap_lookup_table()
poly_mapper.SetLookupTable(lookup_colormap)
poly_mapper.UseLookupTableScalarRangeOn()
poly_mapper.Update()
# Set Actor
if lod:
actor = vtk.vtkLODActor()
actor.SetNumberOfCloudPoints(lod_points)
actor.GetProperty().SetPointSize(lod_points_size)
else:
actor = vtk.vtkActor()
actor.SetMapper(poly_mapper)
actor.GetProperty().SetLineWidth(linewidth)
actor.GetProperty().SetOpacity(opacity)
if fake_tube:
actor.GetProperty().SetRenderLinesAsTubes(True)
return actor
[docs]def scalar_bar(lookup_table=None, title=" "):
""" Default scalar bar actor for a given colormap (colorbar)
Parameters
----------
lookup_table : vtkLookupTable or None
If None then ``colormap_lookup_table`` is called with default options.
title : str
Returns
-------
scalar_bar : vtkScalarBarActor
See Also
--------
:func:`fury.actor.colormap_lookup_table`
"""
lookup_table_copy = vtk.vtkLookupTable()
if lookup_table is None:
lookup_table = colormap_lookup_table()
# Deepcopy the lookup_table because sometimes vtkPolyDataMapper deletes it
lookup_table_copy.DeepCopy(lookup_table)
scalar_bar = vtk.vtkScalarBarActor()
scalar_bar.SetTitle(title)
scalar_bar.SetLookupTable(lookup_table_copy)
scalar_bar.SetNumberOfLabels(6)
return scalar_bar
[docs]def axes(scale=(1, 1, 1), colorx=(1, 0, 0), colory=(0, 1, 0), colorz=(0, 0, 1),
opacity=1):
""" Create an actor with the coordinate's system axes where
red = x, green = y, blue = z.
Parameters
----------
scale : tuple (3,)
Axes size e.g. (100, 100, 100). Default is (1, 1, 1).
colorx : tuple (3,)
x-axis color. Default red (1, 0, 0).
colory : tuple (3,)
y-axis color. Default green (0, 1, 0).
colorz : tuple (3,)
z-axis color. Default blue (0, 0, 1).
opacity : float, optional
Takes values from 0 (fully transparent) to 1 (opaque). Default is 1.
Returns
-------
vtkActor
"""
centers = np.zeros((3, 3))
dirs = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
colors = np.array([colorx + (opacity,),
colory + (opacity,),
colorz + (opacity,)])
scales = np.asarray(scale)
return arrow(centers, dirs, colors, scales)
[docs]def odf_slicer(odfs, affine=None, mask=None, sphere=None, scale=2.2,
norm=True, radial_scale=True, opacity=1.,
colormap='blues', global_cm=False):
""" Slice spherical fields in native or world coordinates
Parameters
----------
odfs : ndarray
4D array of spherical functions
affine : array
4x4 transformation array from native coordinates to world coordinates
mask : ndarray
3D mask
sphere : Sphere
a sphere
scale : float
Distance between spheres.
norm : bool
Normalize `sphere_values`.
radial_scale : bool
Scale sphere points according to odf values.
opacity : float
Takes values from 0 (fully transparent) to 1 (opaque). Default is 1.
colormap : None or str
If None then white color is used. Otherwise the name of colormap is
given. Matplotlib colormaps are supported (e.g., 'inferno').
global_cm : bool
If True the colormap will be applied in all ODFs. If False
it will be applied individually at each voxel (default False).
Returns
---------
actor : vtkActor
Spheres
"""
if mask is None:
mask = np.ones(odfs.shape[:3], dtype=np.bool)
else:
mask = mask.astype(np.bool)
szx, szy, szz = odfs.shape[:3]
class OdfSlicerActor(vtk.vtkLODActor):
def __init__(self):
self.mapper = None
def display_extent(self, x1, x2, y1, y2, z1, z2):
tmp_mask = np.zeros(odfs.shape[:3], dtype=np.bool)
tmp_mask[x1:x2 + 1, y1:y2 + 1, z1:z2 + 1] = True
tmp_mask = np.bitwise_and(tmp_mask, mask)
self.mapper = _odf_slicer_mapper(odfs=odfs,
affine=affine,
mask=tmp_mask,
sphere=sphere,
scale=scale,
norm=norm,
radial_scale=radial_scale,
colormap=colormap,
global_cm=global_cm)
self.SetMapper(self.mapper)
def display(self, x=None, y=None, z=None):
if x is None and y is None and z is None:
self.display_extent(0, szx - 1, 0, szy - 1,
int(np.floor(szz/2)), int(np.floor(szz/2)))
if x is not None:
self.display_extent(x, x, 0, szy - 1, 0, szz - 1)
if y is not None:
self.display_extent(0, szx - 1, y, y, 0, szz - 1)
if z is not None:
self.display_extent(0, szx - 1, 0, szy - 1, z, z)
odf_actor = OdfSlicerActor()
odf_actor.display_extent(0, szx - 1, 0, szy - 1,
int(np.floor(szz/2)), int(np.floor(szz/2)))
odf_actor.GetProperty().SetOpacity(opacity)
return odf_actor
def _odf_slicer_mapper(odfs, affine=None, mask=None, sphere=None, scale=2.2,
norm=True, radial_scale=True, colormap='plasma',
global_cm=False):
""" Helper function for slicing spherical fields
Parameters
----------
odfs : ndarray
4D array of spherical functions
affine : array
4x4 transformation array from native coordinates to world coordinates
mask : ndarray
3D mask
sphere : Sphere
a sphere
scale : float
Distance between spheres.
norm : bool
Normalize `sphere_values`.
radial_scale : bool
Scale sphere points according to odf values.
colormap : None or str
If None then sphere vertices are used to compute orientation-based
color. Otherwise the name of colormap is given. Matplotlib colormaps
are supported (e.g., 'inferno').
global_cm : bool
If True the colormap will be applied in all ODFs. If False
it will be applied individually at each voxel (default False).
Returns
---------
mapper : vtkPolyDataMapper
Spheres mapper
"""
mask = np.ones(odfs.shape[:3]) if mask is None else mask
ijk = np.ascontiguousarray(np.array(np.nonzero(mask)).T)
if len(ijk) == 0:
return None
if affine is not None:
ijk = np.ascontiguousarray(apply_affine(affine, ijk))
faces = np.asarray(sphere.faces, dtype=int)
vertices = sphere.vertices
all_xyz = []
all_faces = []
all_ms = []
for (k, center) in enumerate(ijk):
m = odfs[tuple(center.astype(np.int))].copy()
if norm:
m /= np.abs(m).max()
if radial_scale:
xyz = vertices * m[:, None]
else:
xyz = vertices.copy()
all_xyz.append(scale * xyz + center)
all_faces.append(faces + k * xyz.shape[0])
all_ms.append(m)
all_xyz = np.ascontiguousarray(np.concatenate(all_xyz))
all_xyz_vtk = numpy_support.numpy_to_vtk(all_xyz, deep=True)
all_faces = np.concatenate(all_faces)
all_faces = np.hstack((3 * np.ones((len(all_faces), 1)),
all_faces))
ncells = len(all_faces)
all_faces = np.ascontiguousarray(all_faces.ravel(), dtype='i8')
all_faces_vtk = numpy_support.numpy_to_vtkIdTypeArray(all_faces,
deep=True)
if global_cm:
all_ms = np.ascontiguousarray(
np.concatenate(all_ms), dtype='f4')
points = vtk.vtkPoints()
points.SetData(all_xyz_vtk)
cells = vtk.vtkCellArray()
cells.SetCells(ncells, all_faces_vtk)
if global_cm:
if colormap is None:
raise IOError("if global_cm=True, colormap must be defined")
else:
cols = create_colormap(all_ms.ravel(), colormap)
else:
cols = np.zeros((ijk.shape[0],) + sphere.vertices.shape,
dtype='f4')
for k in range(ijk.shape[0]):
if colormap is not None:
tmp = create_colormap(all_ms[k].ravel(), colormap)
else:
tmp = orient2rgb(sphere.vertices)
cols[k] = tmp.copy()
cols = np.ascontiguousarray(
np.reshape(cols, (cols.shape[0] * cols.shape[1],
cols.shape[2])), dtype='f4')
vtk_colors = numpy_support.numpy_to_vtk(
np.asarray(255 * cols),
deep=True,
array_type=vtk.VTK_UNSIGNED_CHAR)
vtk_colors.SetName("Colors")
polydata = vtk.vtkPolyData()
polydata.SetPoints(points)
polydata.SetPolys(cells)
polydata.GetPointData().SetScalars(vtk_colors)
mapper = vtk.vtkPolyDataMapper()
mapper.SetInputData(polydata)
return mapper
def _makeNd(array, ndim):
"""
Pads as many 1s at the beginning of array's shape as are need to give
array ndim dimensions.
"""
new_shape = (1,) * (ndim - array.ndim) + array.shape
return array.reshape(new_shape)
[docs]def tensor_slicer(evals, evecs, affine=None, mask=None, sphere=None, scale=2.2,
norm=True, opacity=1., scalar_colors=None):
"""Slice many tensors as ellipsoids in native or world coordinates.
Parameters
----------
evals : (3,) or (X, 3) or (X, Y, 3) or (X, Y, Z, 3) ndarray
eigenvalues
evecs : (3, 3) or (X, 3, 3) or (X, Y, 3, 3) or (X, Y, Z, 3, 3) ndarray
eigenvectors
affine : array
4x4 transformation array from native coordinates to world coordinates*
mask : ndarray
3D mask
sphere : Sphere
a sphere
scale : float
Distance between spheres.
norm : bool
Normalize `sphere_values`.
opacity : float
Takes values from 0 (fully transparent) to 1 (opaque). Default is 1.
scalar_colors : (3,) or (X, 3) or (X, Y, 3) or (X, Y, Z, 3) ndarray
RGB colors used to show the tensors
Default None, color the ellipsoids using ``color_fa``
Returns
---------
actor : vtkActor
Ellipsoid
"""
if not evals.shape == evecs.shape[:-1]:
raise RuntimeError(
"Eigenvalues shape {} is incompatible with eigenvectors' {}."
" Please provide eigenvalue and"
" eigenvector arrays that have compatible dimensions."
.format(evals.shape, evecs.shape))
if mask is None:
mask = np.ones(evals.shape[:3], dtype=np.bool)
else:
mask = mask.astype(np.bool)
szx, szy, szz = evals.shape[:3]
class TensorSlicerActor(vtk.vtkLODActor):
def __init__(self):
self.mapper = None
def display_extent(self, x1, x2, y1, y2, z1, z2):
tmp_mask = np.zeros(evals.shape[:3], dtype=np.bool)
tmp_mask[x1:x2 + 1, y1:y2 + 1, z1:z2 + 1] = True
tmp_mask = np.bitwise_and(tmp_mask, mask)
self.mapper = _tensor_slicer_mapper(evals=evals,
evecs=evecs,
affine=affine,
mask=tmp_mask,
sphere=sphere,
scale=scale,
norm=norm,
scalar_colors=scalar_colors)
self.SetMapper(self.mapper)
def display(self, x=None, y=None, z=None):
if x is None and y is None and z is None:
self.display_extent(0, szx - 1, 0, szy - 1,
int(np.floor(szz/2)), int(np.floor(szz/2)))
if x is not None:
self.display_extent(x, x, 0, szy - 1, 0, szz - 1)
if y is not None:
self.display_extent(0, szx - 1, y, y, 0, szz - 1)
if z is not None:
self.display_extent(0, szx - 1, 0, szy - 1, z, z)
tensor_actor = TensorSlicerActor()
tensor_actor.display_extent(0, szx - 1, 0, szy - 1,
int(np.floor(szz/2)), int(np.floor(szz/2)))
tensor_actor.GetProperty().SetOpacity(opacity)
return tensor_actor
def _tensor_slicer_mapper(evals, evecs, affine=None, mask=None, sphere=None,
scale=2.2, norm=True, scalar_colors=None):
"""Helper function for slicing tensor fields
Parameters
----------
evals : (3,) or (X, 3) or (X, Y, 3) or (X, Y, Z, 3) ndarray
eigenvalues
evecs : (3, 3) or (X, 3, 3) or (X, Y, 3, 3) or (X, Y, Z, 3, 3) ndarray
eigenvectors
affine : array
4x4 transformation array from native coordinates to world coordinates
mask : ndarray
3D mask
sphere : Sphere
a sphere
scale : float
Distance between spheres.
norm : bool
Normalize `sphere_values`.
scalar_colors : (3,) or (X, 3) or (X, Y, 3) or (X, Y, Z, 3) ndarray
RGB colors used to show the tensors
Default None, color the ellipsoids using ``color_fa``
Returns
---------
mapper : vtkPolyDataMapper
Ellipsoid mapper
"""
mask = np.ones(evals.shape[:3]) if mask is None else mask
ijk = np.ascontiguousarray(np.array(np.nonzero(mask)).T)
if len(ijk) == 0:
return None
if affine is not None:
ijk = np.ascontiguousarray(apply_affine(affine, ijk))
faces = np.asarray(sphere.faces, dtype=int)
vertices = sphere.vertices
if scalar_colors is None:
from dipy.reconst.dti import color_fa, fractional_anisotropy
cfa = color_fa(fractional_anisotropy(evals), evecs)
else:
cfa = _makeNd(scalar_colors, 4)
cols = np.zeros((ijk.shape[0],) + sphere.vertices.shape,
dtype='f4')
all_xyz = []
all_faces = []
for (k, center) in enumerate(ijk):
ea = evals[tuple(center.astype(np.int))]
if norm:
ea /= ea.max()
ea = np.diag(ea.copy())
ev = evecs[tuple(center.astype(np.int))].copy()
xyz = np.dot(ev, np.dot(ea, vertices.T))
xyz = xyz.T
all_xyz.append(scale * xyz + center)
all_faces.append(faces + k * xyz.shape[0])
cols[k, ...] = np.interp(cfa[tuple(center.astype(np.int))], [0, 1],
[0, 255]).astype('ubyte')
all_xyz = np.ascontiguousarray(np.concatenate(all_xyz))
all_xyz_vtk = numpy_support.numpy_to_vtk(all_xyz, deep=True)
all_faces = np.concatenate(all_faces)
all_faces = np.hstack((3 * np.ones((len(all_faces), 1)),
all_faces))
ncells = len(all_faces)
all_faces = np.ascontiguousarray(all_faces.ravel(), dtype='i8')
all_faces_vtk = numpy_support.numpy_to_vtkIdTypeArray(all_faces,
deep=True)
points = vtk.vtkPoints()
points.SetData(all_xyz_vtk)
cells = vtk.vtkCellArray()
cells.SetCells(ncells, all_faces_vtk)
cols = np.ascontiguousarray(
np.reshape(cols, (cols.shape[0] * cols.shape[1],
cols.shape[2])), dtype='f4')
vtk_colors = numpy_support.numpy_to_vtk(
cols,
deep=True,
array_type=vtk.VTK_UNSIGNED_CHAR)
vtk_colors.SetName("Colors")
polydata = vtk.vtkPolyData()
polydata.SetPoints(points)
polydata.SetPolys(cells)
polydata.GetPointData().SetScalars(vtk_colors)
mapper = vtk.vtkPolyDataMapper()
mapper.SetInputData(polydata)
return mapper
[docs]def peak_slicer(peaks_dirs, peaks_values=None, mask=None, affine=None,
colors=(1, 0, 0), opacity=1., linewidth=1,
lod=False, lod_points=10 ** 4, lod_points_size=3):
"""Visualize peak directions as given from ``peaks_from_model``.
Parameters
----------
peaks_dirs : ndarray
Peak directions. The shape of the array can be (M, 3) or (X, M, 3) or
(X, Y, M, 3) or (X, Y, Z, M, 3)
peaks_values : ndarray
Peak values. The shape of the array can be (M, ) or (X, M) or
(X, Y, M) or (X, Y, Z, M)
affine : array
4x4 transformation array from native coordinates to world coordinates
mask : ndarray
3D mask
colors : tuple or None
Default red color. If None then every peak gets an orientation color
in similarity to a DEC map.
opacity : float, optional
Takes values from 0 (fully transparent) to 1 (opaque)
linewidth : float, optional
Line thickness. Default is 1.
lod : bool
Use vtkLODActor(level of detail) rather than vtkActor.
Default is False. Level of detail actors do not render the full
geometry when the frame rate is low.
lod_points : int
Number of points to be used when LOD is in effect. Default is 10000.
lod_points_size : int
Size of points when lod is in effect. Default is 3.
Returns
-------
vtkActor
See Also
--------
fury.actor.odf_slicer
"""
peaks_dirs = np.asarray(peaks_dirs)
if peaks_dirs.ndim > 5:
raise ValueError("Wrong shape")
peaks_dirs = _makeNd(peaks_dirs, 5)
if peaks_values is not None:
peaks_values = _makeNd(peaks_values, 4)
grid_shape = np.array(peaks_dirs.shape[:3])
if mask is None:
mask = np.ones(grid_shape).astype(np.bool)
class PeakSlicerActor(vtk.vtkLODActor):
def __init__(self):
self.line = None
def display_extent(self, x1, x2, y1, y2, z1, z2):
tmp_mask = np.zeros(grid_shape, dtype=np.bool)
tmp_mask[x1:x2 + 1, y1:y2 + 1, z1:z2 + 1] = True
tmp_mask = np.bitwise_and(tmp_mask, mask)
ijk = np.ascontiguousarray(np.array(np.nonzero(tmp_mask)).T)
if len(ijk) == 0:
self.SetMapper(None)
return
if affine is not None:
ijk_trans = np.ascontiguousarray(apply_affine(affine, ijk))
list_dirs = []
for index, center in enumerate(ijk):
# center = tuple(center)
if affine is None:
xyz = center[:, None]
else:
xyz = ijk_trans[index][:, None]
xyz = xyz.T
for i in range(peaks_dirs[tuple(center)].shape[-2]):
if peaks_values is not None:
pv = peaks_values[tuple(center)][i]
else:
pv = 1.
symm = np.vstack((-peaks_dirs[tuple(center)][i] * pv + xyz,
peaks_dirs[tuple(center)][i] * pv + xyz))
list_dirs.append(symm)
self.line = line(list_dirs, colors=colors,
opacity=opacity, linewidth=linewidth,
lod=lod, lod_points=lod_points,
lod_points_size=lod_points_size)
self.SetProperty(self.line.GetProperty())
self.SetMapper(self.line.GetMapper())
def display(self, x=None, y=None, z=None):
if x is None and y is None and z is None:
self.display_extent(0, szx - 1, 0, szy - 1,
int(np.floor(szz/2)), int(np.floor(szz/2)))
if x is not None:
self.display_extent(x, x, 0, szy - 1, 0, szz - 1)
if y is not None:
self.display_extent(0, szx - 1, y, y, 0, szz - 1)
if z is not None:
self.display_extent(0, szx - 1, 0, szy - 1, z, z)
peak_actor = PeakSlicerActor()
szx, szy, szz = grid_shape
peak_actor.display_extent(0, szx - 1, 0, szy - 1,
int(np.floor(szz / 2)), int(np.floor(szz / 2)))
return peak_actor
[docs]def dots(points, color=(1, 0, 0), opacity=1, dot_size=5):
"""Create one or more 3d points.
Parameters
----------
points : ndarray, (N, 3)
color : tuple (3,)
opacity : float, optional
Takes values from 0 (fully transparent) to 1 (opaque)
dot_size : int
Returns
--------
vtkActor
See Also
---------
fury.actor.point
"""
if points.ndim == 2:
points_no = points.shape[0]
else:
points_no = 1
polyVertexPoints = vtk.vtkPoints()
polyVertexPoints.SetNumberOfPoints(points_no)
aPolyVertex = vtk.vtkPolyVertex()
aPolyVertex.GetPointIds().SetNumberOfIds(points_no)
cnt = 0
if points.ndim > 1:
for point in points:
polyVertexPoints.InsertPoint(cnt, point[0], point[1], point[2])
aPolyVertex.GetPointIds().SetId(cnt, cnt)
cnt += 1
else:
polyVertexPoints.InsertPoint(cnt, points[0], points[1], points[2])
aPolyVertex.GetPointIds().SetId(cnt, cnt)
cnt += 1
aPolyVertexGrid = vtk.vtkUnstructuredGrid()
aPolyVertexGrid.Allocate(1, 1)
aPolyVertexGrid.InsertNextCell(aPolyVertex.GetCellType(),
aPolyVertex.GetPointIds())
aPolyVertexGrid.SetPoints(polyVertexPoints)
aPolyVertexMapper = vtk.vtkDataSetMapper()
aPolyVertexMapper.SetInputData(aPolyVertexGrid)
aPolyVertexActor = vtk.vtkActor()
aPolyVertexActor.SetMapper(aPolyVertexMapper)
aPolyVertexActor.GetProperty().SetColor(color)
aPolyVertexActor.GetProperty().SetOpacity(opacity)
aPolyVertexActor.GetProperty().SetPointSize(dot_size)
return aPolyVertexActor
[docs]def point(points, colors, _opacity=1., point_radius=0.1, theta=8, phi=8):
"""Visualize points as sphere glyphs
Parameters
----------
points : ndarray, shape (N, 3)
colors : ndarray (N,3) or tuple (3,)
point_radius : float
theta : int
phi : int
opacity : float, optional
Takes values from 0 (fully transparent) to 1 (opaque)
Returns
-------
vtkActor
Examples
--------
>>> from fury import window, actor
>>> scene = window.Scene()
>>> pts = np.random.rand(5, 3)
>>> point_actor = actor.point(pts, window.colors.coral)
>>> scene.add(point_actor)
>>> # window.show(scene)
"""
return sphere(centers=points, colors=colors, radii=point_radius,
theta=theta, phi=phi, vertices=None, faces=None)
[docs]def sphere(centers, colors, radii=1., theta=16, phi=16,
vertices=None, faces=None):
"""Visualize one or many spheres with different colors and radii
Parameters
----------
centers : ndarray, shape (N, 3)
Spheres positions
colors : ndarray (N,3) or (N, 4) or tuple (3,) or tuple (4,)
RGB or RGBA (for opacity) R, G, B and A should be at the range [0, 1]
radii : float or ndarray, shape (N,)
Sphere radius
theta : int
phi : int
vertices : ndarray, shape (N, 3)
The point cloud defining the sphere.
faces : ndarray, shape (M, 3)
If faces is None then a sphere is created based on theta and phi angles
If not then a sphere is created with the provided vertices and faces.
Returns
-------
vtkActor
Examples
--------
>>> from fury import window, actor
>>> scene = window.Scene()
>>> centers = np.random.rand(5, 3)
>>> sphere_actor = actor.sphere(centers, window.colors.coral)
>>> scene.add(sphere_actor)
>>> # window.show(scene)
"""
src = vtk.vtkSphereSource() if faces is None else None
if src is not None:
src.SetRadius(1)
src.SetThetaResolution(theta)
src.SetPhiResolution(phi)
actor = repeat_sources(centers=centers, colors=colors,
active_scalars=radii, source=src,
vertices=vertices, faces=faces)
return actor
[docs]def cylinder(centers, directions, colors, radius=0.05, heights=1,
capped=False, resolution=6, vertices=None, faces=None):
"""Visualize one or many cylinder with different features.
Parameters
----------
centers : ndarray, shape (N, 3)
Cylinder positions
directions : ndarray, shape (N, 3)
The orientation vector of the cylinder.
colors : ndarray (N,3) or (N, 4) or tuple (3,) or tuple (4,)
RGB or RGBA (for opacity) R, G, B and A should be at the range [0, 1]
radius : float
cylinder radius, default: 1
heights : ndarray, shape (N)
The height of the arrow.
capped : bool
Turn on/off whether to cap cylinder with polygons. Default (False)
resolution: int
Number of facets used to define cylinder.
vertices : ndarray, shape (N, 3)
The point cloud defining the sphere.
faces : ndarray, shape (M, 3)
If faces is None then a sphere is created based on theta and phi angles
If not then a sphere is created with the provided vertices and faces.
Returns
-------
vtkActor
Examples
--------
>>> from fury import window, actor
>>> scene = window.Scene()
>>> centers = np.random.rand(5, 3)
>>> dirs = np.random.rand(5, 3)
>>> heights = np.random.rand(5)
>>> actor = actor.cylinder(centers, dirs, (1, 1, 1), heights=heights)
>>> scene.add(actor)
>>> # window.show(scene)
"""
src = vtk.vtkCylinderSource() if faces is None else None
if src is not None:
src.SetCapping(capped)
src.SetResolution(resolution)
src.SetRadius(radius)
actor = repeat_sources(centers=centers, colors=colors,
directions=directions,
active_scalars=heights, source=src,
vertices=vertices, faces=faces)
return actor
[docs]def box(centers, directions, colors, size=(1, 2, 3), heights=1,
vertices=None, faces=None):
"""Visualize one or many Box with different features.
Parameters
----------
centers : ndarray, shape (N, 3)
Box positions
directions : ndarray, shape (N, 3)
The orientation vector of the box.
colors : ndarray (N,3) or (N, 4) or tuple (3,) or tuple (4,)
RGB or RGBA (for opacity) R, G, B and A should be at the range [0, 1]
size : tuple (3,)
Box lengths on each direction (x, y, z), default(1, 2, 3)
heights : ndarray, shape (N)
The height of the arrow.
vertices : ndarray, shape (N, 3)
The point cloud defining the sphere.
faces : ndarray, shape (M, 3)
If faces is None then a sphere is created based on theta and phi angles
If not then a sphere is created with the provided vertices and faces.
Returns
-------
vtkActor
Examples
--------
>>> from fury import window, actor
>>> scene = window.Scene()
>>> centers = np.random.rand(5, 3)
>>> dirs = np.random.rand(5, 3)
>>> heights = np.random.rand(5)
>>> box_actor = actor.box(centers, dirs, (1, 1, 1), heights=heights)
>>> scene.add(box_actor)
>>> # window.show(scene)
"""
src = vtk.vtkCubeSource() if faces is None else None
if src is not None:
src.SetXLength(size[0])
src.SetYLength(size[1])
src.SetZLength(size[2])
actor = repeat_sources(centers=centers, colors=colors,
directions=directions,
active_scalars=heights, source=src,
vertices=vertices, faces=faces)
return actor
[docs]def cube(centers, directions, colors, heights=1,
vertices=None, faces=None):
"""Visualize one or many cube with different features.
Parameters
----------
centers : ndarray, shape (N, 3)
Cube positions
directions : ndarray, shape (N, 3)
The orientation vector of the cube.
colors : ndarray (N,3) or (N, 4) or tuple (3,) or tuple (4,)
RGB or RGBA (for opacity) R, G, B and A should be at the range [0, 1]
heights : ndarray, shape (N)
The height of the arrow.
vertices : ndarray, shape (N, 3)
The point cloud defining the sphere.
faces : ndarray, shape (M, 3)
If faces is None then a sphere is created based on theta and phi angles
If not then a sphere is created with the provided vertices and faces.
Returns
-------
vtkActor
Examples
--------
>>> from fury import window, actor
>>> scene = window.Scene()
>>> centers = np.random.rand(5, 3)
>>> dirs = np.random.rand(5, 3)
>>> heights = np.random.rand(5)
>>> cube_actor = actor.cube(centers, dirs, (1, 1, 1), heights=heights)
>>> scene.add(cube_actor)
>>> # window.show(scene)
"""
return box(centers=centers, directions=directions, colors=colors,
size=(1, 1, 1), heights=heights, vertices=vertices, faces=faces)
[docs]def arrow(centers, directions, colors, heights=1., resolution=10,
tip_length=0.35, tip_radius=0.1, shaft_radius=0.03,
vertices=None, faces=None):
"""Visualize one or many arrow with differents features.
Parameters
----------
centers : ndarray, shape (N, 3)
Arrow positions
directions : ndarray, shape (N, 3)
The orientation vector of the arrow.
colors : ndarray (N,3) or (N, 4) or tuple (3,) or tuple (4,)
RGB or RGBA (for opacity) R, G, B and A should be at the range [0, 1]
heights : ndarray, shape (N)
The height of the arrow.
resolution : int
The resolution of the arrow.
tip_length : float
The tip size of the arrow (default: 0.35)
tip_radius : float
the tip radius of the arrow (default: 0.1)
shaft_radius : float
The shaft radius of the arrow (default: 0.03)
vertices : ndarray, shape (N, 3)
The point cloud defining the arrow.
faces : ndarray, shape (M, 3)
If faces is None then a arrow is created based on directions, heights
and resolution. If not then a arrow is created with the provided
vertices and faces.
Returns
-------
vtkActor
Examples
--------
>>> from fury import window, actor
>>> scene = window.Scene()
>>> centers = np.random.rand(5, 3)
>>> directions = np.random.rand(5, 3)
>>> heights = np.random.rand(5)
>>> arrow_actor = actor.arrow(centers, directions, (1, 1, 1), heights)
>>> scene.add(arrow_actor)
>>> # window.show(scene)
"""
src = vtk.vtkArrowSource() if faces is None else None
if src is not None:
src.SetTipResolution(resolution)
src.SetShaftResolution(resolution)
src.SetTipLength(tip_length)
src.SetTipRadius(tip_radius)
src.SetShaftRadius(shaft_radius)
actor = repeat_sources(centers=centers, directions=directions,
colors=colors, active_scalars=heights, source=src,
vertices=vertices, faces=faces)
return actor
[docs]def cone(centers, directions, colors, heights=1., resolution=10,
vertices=None, faces=None):
"""Visualize one or many cones with different features.
Parameters
----------
centers : ndarray, shape (N, 3)
Cone positions
directions : ndarray, shape (N, 3)
The orientation vector of the cone.
colors : ndarray (N,3) or (N, 4) or tuple (3,) or tuple (4,)
RGB or RGBA (for opacity) R, G, B and A should be at the range [0, 1]
heights : ndarray, shape (N)
The height of the cone.
resolution : int
The resolution of the cone.
vertices : ndarray, shape (N, 3)
The point cloud defining the cone.
faces : ndarray, shape (M, 3)
If faces is None then a cone is created based on directions, heights
and resolution. If not then a cone is created with the provided
vertices and faces.
Returns
-------
vtkActor
Examples
--------
>>> from fury import window, actor
>>> scene = window.Scene()
>>> centers = np.random.rand(5, 3)
>>> directions = np.random.rand(5, 3)
>>> heights = np.random.rand(5)
>>> cone_actor = actor.cone(centers, directions, (1, 1, 1), heights)
>>> scene.add(cone_actor)
>>> # window.show(scene)
"""
src = vtk.vtkConeSource() if faces is None else None
if src is not None:
src.SetResolution(resolution)
actor = repeat_sources(centers=centers, directions=directions,
colors=colors, active_scalars=heights, source=src,
vertices=vertices, faces=faces)
return actor
[docs]def superquadric(centers, roundness=(1, 1), directions=(1, 0, 0),
colors=(255, 0, 0), scale=1):
"""Visualize one or many superquadrics with different features.
Parameters
----------
centers : ndarray, shape (N, 3)
Superquadrics positions
roundness : ndarray, shape (N, 2) or tuple/list (2,), optional
parameters (Phi and Theta) that control the shape of the superquadric
directions : ndarray, shape (N, 3) or tuple (3,), optional
The orientation vector of the cone.
colors : ndarray (N,3) or (N, 4) or tuple (3,) or tuple (4,)
RGB or RGBA (for opacity) R, G, B and A should be at the range [0, 1]
scale : ndarray, shape (N) or (N,3) or float or int, optional
The height of the cone.
Returns
-------
vtkActor
Examples
--------
>>> from fury import window, actor
>>> scene = window.Scene()
>>> centers = np.random.rand(3, 3) * 10
>>> directions = np.random.rand(3, 3)
>>> scale = np.random.rand(5)
>>> roundness = np.array([[1, 1], [1, 2], [2, 1]])
>>> sq_actor = actor.superquadric(centers, roundness=roundness,
... directions=directions,
... colors=colors, scale=scale)
>>> scene.add(sq_actor)
>>> # window.show(scene)
"""
def have_2_dimensions(arr):
return all(isinstance(i, (list, tuple, np.ndarray)) for i in arr)
# reshape roundness to a valid numpy array
if (isinstance(roundness, (tuple, list, np.ndarray)) and
len(roundness) == 2 and not have_2_dimensions(roundness)):
roundness = np.array([roundness] * centers.shape[0])
elif isinstance(roundness, np.ndarray) and len(roundness) == 1:
roundness = np.repeat(roundness, centers.shape[0], axis=0)
else:
roundness = np.array(roundness)
res = fp.repeat_primitive_function(func=fp.prim_superquadric,
centers=centers,
func_args=roundness,
directions=directions,
colors=colors, scale=scale)
big_verts, big_faces, big_colors, _ = res
actor = get_actor_from_primitive(big_verts, big_faces, big_colors)
return actor
[docs]def billboard(centers, colors=(0, 255, 0), scale=1, vs_dec=None, vs_impl=None,
fs_dec=None, fs_impl=None, gs_dec=None, gs_impl=None):
"""Create a billboard actor.
Billboards are 2D elements incrusted in a 3D world. It offers you the
possibility to draw differents shapes/elements at the shader level.
Parameters
----------
centers : ndarray, shape (N, 3)
Superquadrics positions
colors : ndarray (N,3) or (N, 4) or tuple (3,) or tuple (4,)
RGB or RGBA (for opacity) R, G, B and A should be at the range [0, 1]
scale : ndarray, shape (N) or (N,3) or float or int, optional
The height of the cone.
vs_dec : str or list of str, optional
vertex shaders code that contains all variable/function delarations
vs_impl : str or list of str, optional
vertex shaders code that contains all variable/function implementation
fs_dec : str or list of str, optional
Fragment shaders code that contains all variable/function delarations
fs_impl : str or list of str, optional
Fragment shaders code that contains all variable/function
implementation
gs_dec : str or list of str, optional
Geometry shaders code that contains all variable/function delarations
gs_impl : str or list of str, optional
Geometry shaders code that contains all variable/function
mplementation
Returns
-------
vtkActor
"""
verts, faces = fp.prim_square()
res = fp.repeat_primitive(verts, faces, centers=centers, colors=colors,
scale=scale)
big_verts, big_faces, big_colors, big_centers = res
actor = get_actor_from_primitive(big_verts, big_faces, big_colors)
actor.GetProperty().BackfaceCullingOff()
vtk_centers = numpy_support.numpy_to_vtk(big_centers, deep=True)
vtk_centers.SetNumberOfComponents(3)
vtk_centers.SetName("center")
actor.GetMapper().GetInput().GetPointData().AddArray(vtk_centers)
def get_code(glsl_code):
code = ""
if not glsl_code:
return code
if not all(isinstance(i, (str)) for i in glsl_code):
raise IOError("The only supported format are string or filename,"
"list of string or filename")
if isinstance(glsl_code, str):
code += "\n"
code += fs.load(glsl_code) if op.isfile(glsl_code) else glsl_code
return code
for content in glsl_code:
code += "\n"
code += fs.load(content) if op.isfile(content) else content
return code
vs_dec_code = get_code(vs_dec) + "\n" + fs.load("billboard_dec.vert")
vs_impl_code = get_code(vs_impl) + "\n" + fs.load("billboard_impl.vert")
fs_dec_code = get_code(fs_dec) + "\n" + fs.load("billboard_dec.frag")
fs_impl_code = fs.load("billboard_impl.frag") + "\n" + get_code(fs_impl)
gs_dec_code = get_code(gs_dec)
gs_impl_code = get_code(gs_impl)
mapper = actor.GetMapper()
mapper.MapDataArrayToVertexAttribute(
"center", "center", vtk.vtkDataObject.FIELD_ASSOCIATION_POINTS, -1)
mapper.AddShaderReplacement(
vtk.vtkShader.Vertex, "//VTK::ValuePass::Dec", True,
vs_dec_code, False)
mapper.AddShaderReplacement(
vtk.vtkShader.Vertex, "//VTK::ValuePass::Impl", True,
vs_impl_code, False)
mapper.AddShaderReplacement(
vtk.vtkShader.Fragment, "//VTK::ValuePass::Dec", True,
fs_dec_code, False)
mapper.AddShaderReplacement(
vtk.vtkShader.Fragment, "//VTK::Light::Impl", True,
fs_impl_code, False)
mapper.AddShaderReplacement(
vtk.vtkShader.Geometry, "//VTK::Output::Dec", True,
gs_dec_code, False)
mapper.AddShaderReplacement(
vtk.vtkShader.Geometry, "//VTK::Output::Impl", True,
gs_impl_code, False)
return actor
[docs]def label(text='Origin', pos=(0, 0, 0), scale=(0.2, 0.2, 0.2),
color=(1, 1, 1)):
"""Create a label actor.
This actor will always face the camera
Parameters
----------
text : str
Text for the label.
pos : (3,) array_like, optional
Left down position of the label.
scale : (3,) array_like
Changes the size of the label.
color : (3,) array_like
Label color as ``(r,g,b)`` tuple.
Returns
-------
l : vtkActor object
Label.
Examples
--------
>>> from fury import window, actor
>>> scene = window.Scene()
>>> l = actor.label(text='Hello')
>>> scene.add(l)
>>> #window.show(scene)
"""
atext = vtk.vtkVectorText()
atext.SetText(text)
textm = vtk.vtkPolyDataMapper()
textm.SetInputConnection(atext.GetOutputPort())
texta = vtk.vtkFollower()
texta.SetMapper(textm)
texta.SetScale(scale)
texta.GetProperty().SetColor(color)
texta.SetPosition(pos)
return texta
[docs]def text_3d(text, position=(0, 0, 0), color=(1, 1, 1),
font_size=12, font_family='Arial', justification='left',
vertical_justification="bottom",
bold=False, italic=False, shadow=False):
""" Generate 2D text that lives in the 3D world
Parameters
----------
text : str
position : tuple
color : tuple
font_size : int
font_family : str
justification : str
Left, center or right (default left)
vertical_justification : str
Bottom, middle or top (default bottom)
bold : bool
italic : bool
shadow : bool
Returns
-------
textActor3D
"""
class TextActor3D(vtk.vtkTextActor3D):
def message(self, text):
self.set_message(text)
def set_message(self, text):
self.SetInput(text)
self._update_user_matrix()
def get_message(self):
return self.GetInput()
def font_size(self, size):
self.GetTextProperty().SetFontSize(24)
text_actor.SetScale((1./24.*size,)*3)
self._update_user_matrix()
def font_family(self, _family='Arial'):
self.GetTextProperty().SetFontFamilyToArial()
# self._update_user_matrix()
def justification(self, justification):
tprop = self.GetTextProperty()
if justification == 'left':
tprop.SetJustificationToLeft()
elif justification == 'center':
tprop.SetJustificationToCentered()
elif justification == 'right':
tprop.SetJustificationToRight()
else:
raise ValueError("Unknown justification: '{}'"
.format(justification))
self._update_user_matrix()
def vertical_justification(self, justification):
tprop = self.GetTextProperty()
if justification == 'top':
tprop.SetVerticalJustificationToTop()
elif justification == 'middle':
tprop.SetVerticalJustificationToCentered()
elif justification == 'bottom':
tprop.SetVerticalJustificationToBottom()
else:
raise ValueError("Unknown vertical justification: '{}'"
.format(justification))
self._update_user_matrix()
def font_style(self, bold=False, italic=False, shadow=False):
tprop = self.GetTextProperty()
if bold:
tprop.BoldOn()
else:
tprop.BoldOff()
if italic:
tprop.ItalicOn()
else:
tprop.ItalicOff()
if shadow:
tprop.ShadowOn()
else:
tprop.ShadowOff()
self._update_user_matrix()
def color(self, color):
self.GetTextProperty().SetColor(*color)
def set_position(self, position):
self.SetPosition(position)
def get_position(self):
return self.GetPosition()
def _update_user_matrix(self):
""" Text justification of vtkTextActor3D doesn't seem to be
working, so we do it manually. Yeah!
"""
user_matrix = np.eye(4)
text_bounds = [0, 0, 0, 0]
self.GetBoundingBox(text_bounds)
tprop = self.GetTextProperty()
if tprop.GetJustification() == vtk.VTK_TEXT_LEFT:
user_matrix[:3, -1] += (-text_bounds[0], 0, 0)
elif tprop.GetJustification() == vtk.VTK_TEXT_CENTERED:
tm = -(text_bounds[0] + (text_bounds[1] - text_bounds[0]) / 2.)
user_matrix[:3, -1] += (tm, 0, 0)
elif tprop.GetJustification() == vtk.VTK_TEXT_RIGHT:
user_matrix[:3, -1] += (-text_bounds[1], 0, 0)
if tprop.GetVerticalJustification() == vtk.VTK_TEXT_BOTTOM:
user_matrix[:3, -1] += (0, -text_bounds[2], 0)
elif tprop.GetVerticalJustification() == vtk.VTK_TEXT_CENTERED:
tm = -(text_bounds[2] + (text_bounds[3] - text_bounds[2]) / 2.)
user_matrix[:3, -1] += (0, tm, 0)
elif tprop.GetVerticalJustification() == vtk.VTK_TEXT_TOP:
user_matrix[:3, -1] += (0, -text_bounds[3], 0)
user_matrix[:3, -1] *= self.GetScale()
self.SetUserMatrix(numpy_to_vtk_matrix(user_matrix))
text_actor = TextActor3D()
text_actor.message(text)
text_actor.font_size(font_size)
text_actor.set_position(position)
text_actor.font_family(font_family)
text_actor.font_style(bold, italic, shadow)
text_actor.color(color)
text_actor.justification(justification)
text_actor.vertical_justification(vertical_justification)
return text_actor
[docs]class Container(object):
""" Provides functionalities for grouping multiple actors using a given
layout.
Attributes
----------
anchor : 3-tuple of float
Anchor of this container used when laying out items in a container.
The anchor point is relative to the center of the container.
Default: (0, 0, 0).
padding : 6-tuple of float
Padding around this container bounding box. The 6-tuple represents
(pad_x_neg, pad_x_pos, pad_y_neg, pad_y_pos, pad_z_neg, pad_z_pos).
Default: (0, 0, 0, 0, 0, 0)
"""
[docs] def __init__(self, layout=layout.Layout()):
"""
Parameters
----------
layout : ``fury.layout.Layout`` object
Items of this container will be arranged according to `layout`.
"""
self.layout = layout
self._items = []
self._need_update = True
self._position = np.zeros(3)
self._visibility = True
self.anchor = np.zeros(3)
self.padding = np.zeros(6)
@property
def items(self):
if self._need_update:
self.update()
return self._items
[docs] def add(self, *items, **kwargs):
""" Adds some items to this container.
Parameters
----------
items : `vtkProp3D` objects
Items to add to this container.
borrow : bool
If True the items are added as-is, otherwise a shallow copy is
made first. If you intend to reuse the items elsewhere you
should set `borrow=False`. Default: True.
"""
self._need_update = True
for item in items:
if not kwargs.get('borrow', True):
item = shallow_copy(item)
self._items.append(item)
[docs] def clear(self):
""" Clears all items of this container. """
self._need_update = True
del self._items[:]
[docs] def update(self):
""" Updates the position of the items of this container. """
self.layout.apply(self._items)
self._need_update = False
[docs] def add_to_scene(self, ren):
""" Adds the items of this container to a given renderer. """
for item in self.items:
if isinstance(item, Container):
item.add_to_scene(ren)
else:
ren.add(item)
[docs] def GetBounds(self):
""" Get the bounds of the container. """
bounds = np.zeros(6) # x1, x2, y1, y2, z1, z2
bounds[::2] = np.inf # x1, y1, z1
bounds[1::2] = -np.inf # x2, y2, z2
for item in self.items:
item_bounds = item.GetBounds()
bounds[::2] = np.minimum(bounds[::2], item_bounds[::2])
bounds[1::2] = np.maximum(bounds[1::2], item_bounds[1::2])
# Add padding, if any.
bounds[::2] -= self.padding[::2]
bounds[1::2] += self.padding[1::2]
return tuple(bounds)
[docs] def GetVisibility(self):
return self._visibility
[docs] def SetVisibility(self, visibility):
self._visibility = visibility
for item in self.items:
item.SetVisibility(visibility)
[docs] def GetPosition(self):
return self._position
[docs] def AddPosition(self, position):
self._position += position
for item in self.items:
item.AddPosition(position)
[docs] def SetPosition(self, position):
self.AddPosition(np.array(position) - self._position)
[docs] def GetCenter(self):
""" Get the center of the bounding box. """
x1, x2, y1, y2, z1, z2 = self.GetBounds()
return ((x1+x2)/2., (y1+y2)/2., (z1+z2)/2.)
[docs] def GetLength(self):
""" Get the length of bounding box diagonal. """
x1, x2, y1, y2, z1, z2 = self.GetBounds()
width, height, depth = x2-x1, y2-y1, z2-z1
return np.sqrt(np.sum([width**2, height**2, depth**2]))
[docs] def NewInstance(self):
return Container(layout=self.layout)
[docs] def ShallowCopy(self, other):
self._position = other._position.copy()
self.anchor = other.anchor
self.clear()
self.add(*other._items, borrow=False)
self.update()
def __len__(self):
return len(self._items)
[docs]def grid(actors, captions=None, caption_offset=(0, -100, 0), cell_padding=0,
cell_shape="rect", aspect_ratio=16/9., dim=None):
""" Creates a grid of actors that lies in the xy-plane.
Parameters
----------
actors : list of `vtkProp3D` objects
Actors to be layout in a grid manner.
captions : list of `vtkProp3D` objects or list of str
Objects serving as captions (can be any `vtkProp3D` object, not
necessarily text). There should be one caption per actor. By
default, there are no captions.
caption_offset : tuple of float (optional)
Tells where to position the caption w.r.t. the center of its
associated actor. Default: (0, -100, 0).
cell_padding : tuple of 2 floats or float
Each grid cell will be padded according to (pad_x, pad_y) i.e.
horizontally and vertically. Padding is evenly distributed on each
side of the cell. If a single float is provided then both pad_x and
pad_y will have the same value.
cell_shape : str
Specifies the desired shape of every grid cell.
'rect' ensures the cells are the tightest.
'square' ensures the cells are as wide as high.
'diagonal' ensures the content of the cells can be rotated without
colliding with content of the neighboring cells.
aspect_ratio : float
Aspect ratio of the grid (width/height). Default: 16:9.
dim : tuple of int
Dimension (nb_rows, nb_cols) of the grid. If provided,
`aspect_ratio` will be ignored.
Returns
-------
``fury.actor.Container`` object
Object that represents the grid containing all the actors and
captions, if any.
"""
grid_layout = layout.GridLayout(cell_padding=cell_padding,
cell_shape=cell_shape,
aspect_ratio=aspect_ratio, dim=dim)
grid = Container(layout=grid_layout)
if captions is not None:
actors_with_caption = []
for actor, caption in zip(actors, captions):
actor_center = np.array(actor.GetCenter())
# Offset accordingly the caption w.r.t.
# the center of the associated actor.
if isinstance(caption, str):
caption = text_3d(caption, justification='center')
else:
caption = shallow_copy(caption)
caption.SetPosition(actor_center + caption_offset)
actor_with_caption = Container()
actor_with_caption.add(actor, caption)
# We change the anchor of the container so
# the actor will be centered in the
# grid cell.
actor_with_caption.anchor = actor_center - \
actor_with_caption.GetCenter()
actors_with_caption.append(actor_with_caption)
actors = actors_with_caption
grid.add(*actors)
return grid
[docs]def texture(rgb, interp=True):
""" Map an RGB or RGBA texture on a plane
Parameters
----------
rgb : ndarray
Input 2D RGB or RGBA array. Dtype should be uint8.
interp : bool
Interpolate between grid centers. Default True.
Returns
-------
vtkActor
"""
arr = rgb
grid = rgb_to_vtk(np.ascontiguousarray(arr))
Y, X = arr.shape[:2]
# Get vertices and triangles, then scale it
vertices, triangles = fp.prim_square()
vertices *= np.array([[X, Y, 0]])
# Create a polydata
my_polydata = vtk.vtkPolyData()
set_polydata_vertices(my_polydata, vertices)
set_polydata_triangles(my_polydata, triangles)
# Create texture object
texture = vtk.vtkTexture()
texture.SetInputDataObject(grid)
# texture.UseSRGBColorSpaceOn()
# texture.SetPremultipliedAlpha(True)
if interp:
texture.InterpolateOn()
# Map texture coordinates
map_to_sphere = vtk.vtkTextureMapToPlane()
map_to_sphere.SetInputData(my_polydata)
# Create mapper and set the mapped texture as input
mapper = vtk.vtkPolyDataMapper()
mapper.SetInputConnection(map_to_sphere.GetOutputPort())
mapper.Update()
# Create actor and set the mapper and the texture
act = vtk.vtkActor()
act.SetMapper(mapper)
act.SetTexture(texture)
return act
def _textured_sphere_source(theta=60, phi=60):
tss = vtk.vtkTexturedSphereSource()
tss.SetThetaResolution(theta)
tss.SetPhiResolution(phi)
return tss
[docs]def texture_on_sphere(rgb, theta=60, phi=60, interpolate=True):
tss = _textured_sphere_source(theta=theta, phi=phi)
earthMapper = vtk.vtkPolyDataMapper()
earthMapper.SetInputConnection(tss.GetOutputPort())
earthActor = vtk.vtkActor()
earthActor.SetMapper(earthMapper)
atext = vtk.vtkTexture()
grid = rgb_to_vtk(rgb)
atext.SetInputDataObject(grid)
if interpolate:
atext.InterpolateOn()
earthActor.SetTexture(atext)
return earthActor