Source code for fury.actor

"""Module that provide actors to render."""

import os.path as op
import numpy as np
import vtk
from vtk.util import numpy_support

import fury.shaders as fs
from fury import layout
from fury.colormap import colormap_lookup_table, create_colormap, orient2rgb
from fury.utils import (lines_to_vtk_polydata, set_input, apply_affine,
                        set_polydata_vertices, set_polydata_triangles,
                        numpy_to_vtk_matrix, shallow_copy, rgb_to_vtk,
                        repeat_sources, get_actor_from_primitive)
from fury.io import load_image
import fury.primitive as fp


[docs]def slicer(data, affine=None, value_range=None, opacity=1., lookup_colormap=None, interpolation='linear', picking_tol=0.025): """Cut 3D scalar or rgb volumes into 2D images. Parameters ---------- data : array, shape (X, Y, Z) or (X, Y, Z, 3) A grayscale or rgb 4D volume as a numpy array. If rgb then values expected on the range [0, 255]. affine : array, shape (4, 4) Grid to space (usually RAS 1mm) transformation matrix. Default is None. If None then the identity matrix is used. value_range : None or tuple (2,) If None then the values will be interpolated from (data.min(), data.max()) to (0, 255). Otherwise from (value_range[0], value_range[1]) to (0, 255). opacity : float, optional Opacity of 0 means completely transparent and 1 completely visible. lookup_colormap : vtkLookupTable, optional If None (default) then a grayscale map is created. interpolation : string, optional If 'linear' (default) then linear interpolation is used on the final texture mapping. If 'nearest' then nearest neighbor interpolation is used on the final texture mapping. picking_tol : float, optional The tolerance for the vtkCellPicker, specified as a fraction of rendering window size. Returns ------- image_actor : ImageActor An object that is capable of displaying different parts of the volume as slices. The key method of this object is ``display_extent`` where one can input grid coordinates and display the slice in space (or grid) coordinates as calculated by the affine parameter. """ if value_range is None: value_range = (data.min(), data.max()) if data.ndim != 3: if data.ndim == 4: if data.shape[3] != 3: raise ValueError('Only RGB 3D arrays are currently supported.') else: nb_components = 3 else: raise ValueError('Only 3D arrays are currently supported.') else: nb_components = 1 vol = data im = vtk.vtkImageData() I, J, K = vol.shape[:3] im.SetDimensions(I, J, K) # for now setting up for 1x1x1 but transformation comes later. voxsz = (1., 1., 1.) # im.SetOrigin(0,0,0) im.SetSpacing(voxsz[2], voxsz[0], voxsz[1]) vtk_type = numpy_support.get_vtk_array_type(vol.dtype) im.AllocateScalars(vtk_type, nb_components) # im.AllocateScalars(vtk.VTK_UNSIGNED_CHAR, nb_components) # copy data # what I do below is the same as what is # commented here but much faster # for index in ndindex(vol.shape): # i, j, k = index # im.SetScalarComponentFromFloat(i, j, k, 0, vol[i, j, k]) vol = np.swapaxes(vol, 0, 2) vol = np.ascontiguousarray(vol) if nb_components == 1: vol = vol.ravel() else: vol = np.reshape(vol, [np.prod(vol.shape[:3]), vol.shape[3]]) uchar_array = numpy_support.numpy_to_vtk(vol, deep=0) im.GetPointData().SetScalars(uchar_array) if affine is None: affine = np.eye(4) # Set the transform (identity if none given) transform = vtk.vtkTransform() transform_matrix = vtk.vtkMatrix4x4() transform_matrix.DeepCopy(( affine[0][0], affine[0][1], affine[0][2], affine[0][3], affine[1][0], affine[1][1], affine[1][2], affine[1][3], affine[2][0], affine[2][1], affine[2][2], affine[2][3], affine[3][0], affine[3][1], affine[3][2], affine[3][3])) transform.SetMatrix(transform_matrix) transform.Inverse() # Set the reslicing image_resliced = vtk.vtkImageReslice() set_input(image_resliced, im) image_resliced.SetResliceTransform(transform) image_resliced.AutoCropOutputOn() # Adding this will allow to support anisotropic voxels # and also gives the opportunity to slice per voxel coordinates RZS = affine[:3, :3] zooms = np.sqrt(np.sum(RZS * RZS, axis=0)) image_resliced.SetOutputSpacing(*zooms) image_resliced.SetInterpolationModeToLinear() image_resliced.Update() vtk_resliced_data = image_resliced.GetOutput() ex1, ex2, ey1, ey2, ez1, ez2 = vtk_resliced_data.GetExtent() resliced = numpy_support.vtk_to_numpy( vtk_resliced_data.GetPointData().GetScalars()) # swap axes here if data.ndim == 4: if data.shape[-1] == 3: resliced = resliced.reshape(ez2 + 1, ey2 + 1, ex2 + 1, 3) if data.ndim == 3: resliced = resliced.reshape(ez2 + 1, ey2 + 1, ex2 + 1) class ImageActor(vtk.vtkImageActor): def __init__(self): self.picker = vtk.vtkCellPicker() self.output = None self.shape = None self.outline_actor = None def input_connection(self, output): # outline only outline = vtk.vtkOutlineFilter() outline.SetInputData(vtk_resliced_data) outline_mapper = vtk.vtkPolyDataMapper() outline_mapper.SetInputConnection(outline.GetOutputPort()) self.outline_actor = vtk.vtkActor() self.outline_actor.SetMapper(outline_mapper) self.outline_actor.GetProperty().SetColor(1, 0.5, 0) self.outline_actor.GetProperty().SetLineWidth(5) self.outline_actor.GetProperty().SetRenderLinesAsTubes(True) # crucial self.GetMapper().SetInputConnection(output.GetOutputPort()) self.output = output self.shape = (ex2 + 1, ey2 + 1, ez2 + 1) def display_extent(self, x1, x2, y1, y2, z1, z2): self.SetDisplayExtent(x1, x2, y1, y2, z1, z2) self.Update() # bounds = self.GetBounds() # xmin, xmax, ymin, ymax, zmin, zmax = bounds # line = np.array([[xmin, ymin, zmin]]) # self.outline_actor = actor.line() def display(self, x=None, y=None, z=None): if x is None and y is None and z is None: self.display_extent(ex1, ex2, ey1, ey2, ez2//2, ez2//2) if x is not None: self.display_extent(x, x, ey1, ey2, ez1, ez2) if y is not None: self.display_extent(ex1, ex2, y, y, ez1, ez2) if z is not None: self.display_extent(ex1, ex2, ey1, ey2, z, z) def resliced_array(self): """ Returns resliced array as numpy array""" resliced = numpy_support.vtk_to_numpy( vtk_resliced_data.GetPointData().GetScalars()) # swap axes here if data.ndim == 4: if data.shape[-1] == 3: resliced = resliced.reshape(ez2 + 1, ey2 + 1, ex2 + 1, 3) if data.ndim == 3: resliced = resliced.reshape(ez2 + 1, ey2 + 1, ex2 + 1) resliced = np.swapaxes(resliced, 0, 2) resliced = np.ascontiguousarray(resliced) return resliced def opacity(self, value): self.GetProperty().SetOpacity(value) def tolerance(self, value): self.picker.SetTolerance(value) def copy(self): im_actor = ImageActor() im_actor.input_connection(self.output) im_actor.SetDisplayExtent(*self.GetDisplayExtent()) im_actor.opacity(self.GetOpacity()) im_actor.tolerance(self.picker.GetTolerance()) if interpolation == 'nearest': im_actor.SetInterpolate(False) else: im_actor.SetInterpolate(True) im_actor.GetMapper().BorderOn() return im_actor def shallow_copy(self): # TODO rename copy to shallow_copy self.copy() r1, r2 = value_range image_actor = ImageActor() if nb_components == 1: lut = lookup_colormap if lookup_colormap is None: # Create a black/white lookup table. lut = colormap_lookup_table((r1, r2), (0, 0), (0, 0), (0, 1)) plane_colors = vtk.vtkImageMapToColors() plane_colors.SetLookupTable(lut) plane_colors.SetInputConnection(image_resliced.GetOutputPort()) plane_colors.Update() image_actor.input_connection(plane_colors) else: image_actor.input_connection(image_resliced) image_actor.display() image_actor.opacity(opacity) image_actor.tolerance(picking_tol) if interpolation == 'nearest': image_actor.SetInterpolate(False) else: image_actor.SetInterpolate(True) image_actor.GetMapper().BorderOn() return image_actor
[docs]def surface(vertices, faces=None, colors=None, smooth=None, subdivision=3): """Generates a surface actor from an array of vertices The color and smoothness of the surface can be customized by specifying the type of subdivision algorithm and the number of subdivisions. Parameters ---------- vertices : array, shape (X, Y, Z) The point cloud defining the surface. faces : array An array of precomputed triangulation for the point cloud. It is an optional parameter, it is computed locally if None colors : (N, 3) array Specifies the colors associated with each vertex in the vertices array. Optional parameter, if not passed, all vertices are colored white smooth : string - "loop" or "butterfly" Defines the type of subdivision to be used for smoothing the surface subdivision : integer, default = 3 Defines the number of subdivisions to do for each triangulation of the point cloud. The higher the value, smoother the surface but at the cost of higher computation Returns ------- surface_actor : vtkActor A vtkActor visualizing the final surface computed from the point cloud is returned. """ from scipy.spatial import Delaunay points = vtk.vtkPoints() points.SetData(numpy_support.numpy_to_vtk(vertices)) triangle_poly_data = vtk.vtkPolyData() triangle_poly_data.SetPoints(points) if colors is not None: triangle_poly_data.GetPointData().\ SetScalars(numpy_support.numpy_to_vtk(colors)) if faces is None: tri = Delaunay(vertices[:, [0, 1]]) faces = np.array(tri.simplices, dtype='i8') if faces.shape[1] == 3: triangles = np.empty((faces.shape[0], 4), dtype=np.int64) triangles[:, -3:] = faces triangles[:, 0] = 3 else: triangles = faces if not triangles.flags['C_CONTIGUOUS'] or triangles.dtype != 'int64': triangles = np.ascontiguousarray(triangles, 'int64') cells = vtk.vtkCellArray() cells.SetCells(triangles.shape[0], numpy_support.numpy_to_vtkIdTypeArray(triangles, deep=True)) triangle_poly_data.SetPolys(cells) clean_poly_data = vtk.vtkCleanPolyData() clean_poly_data.SetInputData(triangle_poly_data) mapper = vtk.vtkPolyDataMapper() surface_actor = vtk.vtkActor() if smooth is None: mapper.SetInputData(triangle_poly_data) surface_actor.SetMapper(mapper) elif smooth == "loop": smooth_loop = vtk.vtkLoopSubdivisionFilter() smooth_loop.SetNumberOfSubdivisions(subdivision) smooth_loop.SetInputConnection(clean_poly_data.GetOutputPort()) mapper.SetInputConnection(smooth_loop.GetOutputPort()) surface_actor.SetMapper(mapper) elif smooth == "butterfly": smooth_butterfly = vtk.vtkButterflySubdivisionFilter() smooth_butterfly.SetNumberOfSubdivisions(subdivision) smooth_butterfly.SetInputConnection(clean_poly_data.GetOutputPort()) mapper.SetInputConnection(smooth_butterfly.GetOutputPort()) surface_actor.SetMapper(mapper) return surface_actor
[docs]def contour_from_roi(data, affine=None, color=np.array([1, 0, 0]), opacity=1): """Generate surface actor from a binary ROI. The color and opacity of the surface can be customized. Parameters ---------- data : array, shape (X, Y, Z) An ROI file that will be binarized and displayed. affine : array, shape (4, 4) Grid to space (usually RAS 1mm) transformation matrix. Default is None. If None then the identity matrix is used. color : (1, 3) ndarray RGB values in [0,1]. opacity : float Opacity of surface between 0 and 1. Returns ------- contour_assembly : vtkAssembly ROI surface object displayed in space coordinates as calculated by the affine parameter. """ if data.ndim != 3: raise ValueError('Only 3D arrays are currently supported.') nb_components = 1 data = (data > 0) * 1 vol = np.interp(data, xp=[data.min(), data.max()], fp=[0, 255]) vol = vol.astype('uint8') im = vtk.vtkImageData() di, dj, dk = vol.shape[:3] im.SetDimensions(di, dj, dk) voxsz = (1., 1., 1.) # im.SetOrigin(0,0,0) im.SetSpacing(voxsz[2], voxsz[0], voxsz[1]) im.AllocateScalars(vtk.VTK_UNSIGNED_CHAR, nb_components) # copy data vol = np.swapaxes(vol, 0, 2) vol = np.ascontiguousarray(vol) vol = vol.ravel() uchar_array = numpy_support.numpy_to_vtk(vol, deep=0) im.GetPointData().SetScalars(uchar_array) if affine is None: affine = np.eye(4) # Set the transform (identity if none given) transform = vtk.vtkTransform() transform_matrix = vtk.vtkMatrix4x4() transform_matrix.DeepCopy(( affine[0][0], affine[0][1], affine[0][2], affine[0][3], affine[1][0], affine[1][1], affine[1][2], affine[1][3], affine[2][0], affine[2][1], affine[2][2], affine[2][3], affine[3][0], affine[3][1], affine[3][2], affine[3][3])) transform.SetMatrix(transform_matrix) transform.Inverse() # Set the reslicing image_resliced = vtk.vtkImageReslice() set_input(image_resliced, im) image_resliced.SetResliceTransform(transform) image_resliced.AutoCropOutputOn() # Adding this will allow to support anisotropic voxels # and also gives the opportunity to slice per voxel coordinates rzs = affine[:3, :3] zooms = np.sqrt(np.sum(rzs * rzs, axis=0)) image_resliced.SetOutputSpacing(*zooms) image_resliced.SetInterpolationModeToLinear() image_resliced.Update() skin_extractor = vtk.vtkContourFilter() skin_extractor.SetInputData(image_resliced.GetOutput()) skin_extractor.SetValue(0, 1) skin_normals = vtk.vtkPolyDataNormals() skin_normals.SetInputConnection(skin_extractor.GetOutputPort()) skin_normals.SetFeatureAngle(60.0) skin_mapper = vtk.vtkPolyDataMapper() skin_mapper.SetInputConnection(skin_normals.GetOutputPort()) skin_mapper.ScalarVisibilityOff() skin_actor = vtk.vtkActor() skin_actor.SetMapper(skin_mapper) skin_actor.GetProperty().SetOpacity(opacity) skin_actor.GetProperty().SetColor(color[0], color[1], color[2]) return skin_actor
[docs]def contour_from_label(data, affine=None, color=None): """Generate surface actor from a labeled Array. The color and opacity of individual surfaces can be customized. Parameters ---------- data : array, shape (X, Y, Z) A labeled array file that will be binarized and displayed. affine : array, shape (4, 4) Grid to space (usually RAS 1mm) transformation matrix. Default is None. If None then the identity matrix is used. color : (N, 3) or (N, 4) ndarray RGB/RGBA values in [0,1]. Default is None. If None then random colors are used. Alpha channel is set to 1 by default. Returns ------- contour_assembly : vtkAssembly Array surface object displayed in space coordinates as calculated by the affine parameter in the order of their roi ids. """ unique_roi_id = np.delete(np.unique(data), 0) nb_surfaces = len(unique_roi_id) unique_roi_surfaces = vtk.vtkAssembly() if color is None: color = np.random.rand(nb_surfaces, 3) elif color.shape != (nb_surfaces, 3) and color.shape != (nb_surfaces, 4): raise ValueError("Incorrect color array shape") if color.shape == (nb_surfaces, 4): opacity = color[:, -1] color = color[:, :-1] else: opacity = np.ones((nb_surfaces, 1)).astype(np.float) for roi_id in unique_roi_id: roi_data = np.isin(data, roi_id).astype(np.int) roi_surface = contour_from_roi(roi_data, affine, color=color[int(roi_id)-1], opacity=opacity[int(roi_id)-1]) unique_roi_surfaces.AddPart(roi_surface) return unique_roi_surfaces
[docs]def streamtube(lines, colors=None, opacity=1, linewidth=0.1, tube_sides=9, lod=True, lod_points=10 ** 4, lod_points_size=3, spline_subdiv=None, lookup_colormap=None): """Use streamtubes to visualize polylines Parameters ---------- lines : list list of N curves represented as 2D ndarrays colors : array (N, 3), list of arrays, tuple (3,), array (K,) If None or False, a standard orientation colormap is used for every line. If one tuple of color is used. Then all streamlines will have the same colour. If an array (N, 3) is given, where N is equal to the number of lines. Then every line is coloured with a different RGB color. If a list of RGB arrays is given then every point of every line takes a different color. If an array (K, 3) is given, where K is the number of points of all lines then every point is colored with a different RGB color. If an array (K,) is given, where K is the number of points of all lines then these are considered as the values to be used by the colormap. If an array (L,) is given, where L is the number of streamlines then these are considered as the values to be used by the colormap per streamline. If an array (X, Y, Z) or (X, Y, Z, 3) is given then the values for the colormap are interpolated automatically using trilinear interpolation. opacity : float, optional Takes values from 0 (fully transparent) to 1 (opaque). Default is 1. linewidth : float, optional Default is 0.01. tube_sides : int, optional Default is 9. lod : bool, optional Use vtkLODActor(level of detail) rather than vtkActor. Default is True. Level of detail actors do not render the full geometry when the frame rate is low. lod_points : int, optional Number of points to be used when LOD is in effect. Default is 10000. lod_points_size : int, optional Size of points when lod is in effect. Default is 3. spline_subdiv : int, optional Number of splines subdivision to smooth streamtubes. Default is None. lookup_colormap : vtkLookupTable, optional Add a default lookup table to the colormap. Default is None which calls :func:`fury.actor.colormap_lookup_table`. Examples -------- >>> import numpy as np >>> from fury import actor, window >>> scene = window.Scene() >>> lines = [np.random.rand(10, 3), np.random.rand(20, 3)] >>> colors = np.random.rand(2, 3) >>> c = actor.streamtube(lines, colors) >>> scene.add(c) >>> #window.show(scene) Notes ----- Streamtubes can be heavy on GPU when loading many streamlines and therefore, you may experience slow rendering time depending on system GPU. A solution to this problem is to reduce the number of points in each streamline. In Dipy we provide an algorithm that will reduce the number of points on the straighter parts of the streamline but keep more points on the curvier parts. This can be used in the following way:: from dipy.tracking.distances import approx_polygon_track lines = [approx_polygon_track(line, 0.2) for line in lines] Alternatively we suggest using the ``line`` actor which is much more efficient. See Also -------- :func:`fury.actor.line` """ # Poly data with lines and colors poly_data, color_is_scalar = lines_to_vtk_polydata(lines, colors) next_input = poly_data # Set Normals poly_normals = set_input(vtk.vtkPolyDataNormals(), next_input) poly_normals.ComputeCellNormalsOn() poly_normals.ComputePointNormalsOn() poly_normals.ConsistencyOn() poly_normals.AutoOrientNormalsOn() poly_normals.Update() next_input = poly_normals.GetOutputPort() # Spline interpolation if (spline_subdiv is not None) and (spline_subdiv > 0): spline_filter = set_input(vtk.vtkSplineFilter(), next_input) spline_filter.SetSubdivideToSpecified() spline_filter.SetNumberOfSubdivisions(spline_subdiv) spline_filter.Update() next_input = spline_filter.GetOutputPort() # Add thickness to the resulting lines tube_filter = set_input(vtk.vtkTubeFilter(), next_input) tube_filter.SetNumberOfSides(tube_sides) tube_filter.SetRadius(linewidth) # TODO using the line above we will be able to visualize # streamtubes of varying radius # tube_filter.SetVaryRadiusToVaryRadiusByScalar() tube_filter.CappingOn() tube_filter.Update() next_input = tube_filter.GetOutputPort() # Poly mapper poly_mapper = set_input(vtk.vtkPolyDataMapper(), next_input) poly_mapper.ScalarVisibilityOn() poly_mapper.SetScalarModeToUsePointFieldData() poly_mapper.SelectColorArray("Colors") poly_mapper.Update() # Color Scale with a lookup table if color_is_scalar: if lookup_colormap is None: lookup_colormap = colormap_lookup_table() poly_mapper.SetLookupTable(lookup_colormap) poly_mapper.UseLookupTableScalarRangeOn() poly_mapper.Update() # Set Actor if lod: actor = vtk.vtkLODActor() actor.SetNumberOfCloudPoints(lod_points) actor.GetProperty().SetPointSize(lod_points_size) else: actor = vtk.vtkActor() actor.SetMapper(poly_mapper) actor.GetProperty().SetInterpolationToPhong() actor.GetProperty().BackfaceCullingOn() actor.GetProperty().SetOpacity(opacity) return actor
[docs]def line(lines, colors=None, opacity=1, linewidth=1, spline_subdiv=None, lod=True, lod_points=10 ** 4, lod_points_size=3, lookup_colormap=None, depth_cue=False, fake_tube=False): """ Create an actor for one or more lines. Parameters ------------ lines : list of arrays colors : array (N, 3), list of arrays, tuple (3,), array (K,) If None or False, a standard orientation colormap is used for every line. If one tuple of color is used. Then all streamlines will have the same colour. If an array (N, 3) is given, where N is equal to the number of lines. Then every line is coloured with a different RGB color. If a list of RGB arrays is given then every point of every line takes a different color. If an array (K, 3) is given, where K is the number of points of all lines then every point is colored with a different RGB color. If an array (K,) is given, where K is the number of points of all lines then these are considered as the values to be used by the colormap. If an array (L,) is given, where L is the number of streamlines then these are considered as the values to be used by the colormap per streamline. If an array (X, Y, Z) or (X, Y, Z, 3) is given then the values for the colormap are interpolated automatically using trilinear interpolation. opacity : float, optional Takes values from 0 (fully transparent) to 1 (opaque). Default is 1. linewidth : float, optional Line thickness. Default is 1. spline_subdiv : int, optional Number of splines subdivision to smooth streamtubes. Default is None which means no subdivision. lod : bool, optional Use vtkLODActor(level of detail) rather than vtkActor. Default is True. Level of detail actors do not render the full geometry when the frame rate is low. lod_points : int, optional Number of points to be used when LOD is in effect. Default is 10000. lod_points_size : int Size of points when lod is in effect. Default is 3. lookup_colormap : vtkLookupTable, optional Add a default lookup table to the colormap. Default is None which calls :func:`fury.actor.colormap_lookup_table`. depth_cue : boolean, optional Add a size depth cue so that lines shrink with distance to the camera. Works best with linewidth <= 1. fake_tube: boolean, optional Add shading to lines to approximate the look of tubes. Returns ---------- v : vtkActor or vtkLODActor object Line. Examples ---------- >>> from fury import actor, window >>> scene = window.Scene() >>> lines = [np.random.rand(10, 3), np.random.rand(20, 3)] >>> colors = np.random.rand(2, 3) >>> c = actor.line(lines, colors) >>> scene.add(c) >>> #window.show(scene) """ # Poly data with lines and colors poly_data, color_is_scalar = lines_to_vtk_polydata(lines, colors) next_input = poly_data # use spline interpolation if (spline_subdiv is not None) and (spline_subdiv > 0): spline_filter = set_input(vtk.vtkSplineFilter(), next_input) spline_filter.SetSubdivideToSpecified() spline_filter.SetNumberOfSubdivisions(spline_subdiv) spline_filter.Update() next_input = spline_filter.GetOutputPort() poly_mapper = set_input(vtk.vtkPolyDataMapper(), next_input) poly_mapper.ScalarVisibilityOn() poly_mapper.SetScalarModeToUsePointFieldData() poly_mapper.SelectColorArray("Colors") poly_mapper.Update() if depth_cue: poly_mapper.SetGeometryShaderCode(fs.load("line.geom")) @vtk.calldata_type(vtk.VTK_OBJECT) def vtkShaderCallback(_caller, _event, calldata=None): program = calldata if program is not None: program.SetUniformf("linewidth", linewidth) poly_mapper.AddObserver(vtk.vtkCommand.UpdateShaderEvent, vtkShaderCallback) # Color Scale with a lookup table if color_is_scalar: if lookup_colormap is None: lookup_colormap = colormap_lookup_table() poly_mapper.SetLookupTable(lookup_colormap) poly_mapper.UseLookupTableScalarRangeOn() poly_mapper.Update() # Set Actor if lod: actor = vtk.vtkLODActor() actor.SetNumberOfCloudPoints(lod_points) actor.GetProperty().SetPointSize(lod_points_size) else: actor = vtk.vtkActor() actor.SetMapper(poly_mapper) actor.GetProperty().SetLineWidth(linewidth) actor.GetProperty().SetOpacity(opacity) if fake_tube: actor.GetProperty().SetRenderLinesAsTubes(True) return actor
[docs]def scalar_bar(lookup_table=None, title=" "): """ Default scalar bar actor for a given colormap (colorbar) Parameters ---------- lookup_table : vtkLookupTable or None If None then ``colormap_lookup_table`` is called with default options. title : str Returns ------- scalar_bar : vtkScalarBarActor See Also -------- :func:`fury.actor.colormap_lookup_table` """ lookup_table_copy = vtk.vtkLookupTable() if lookup_table is None: lookup_table = colormap_lookup_table() # Deepcopy the lookup_table because sometimes vtkPolyDataMapper deletes it lookup_table_copy.DeepCopy(lookup_table) scalar_bar = vtk.vtkScalarBarActor() scalar_bar.SetTitle(title) scalar_bar.SetLookupTable(lookup_table_copy) scalar_bar.SetNumberOfLabels(6) return scalar_bar
[docs]def axes(scale=(1, 1, 1), colorx=(1, 0, 0), colory=(0, 1, 0), colorz=(0, 0, 1), opacity=1): """ Create an actor with the coordinate's system axes where red = x, green = y, blue = z. Parameters ---------- scale : tuple (3,) Axes size e.g. (100, 100, 100). Default is (1, 1, 1). colorx : tuple (3,) x-axis color. Default red (1, 0, 0). colory : tuple (3,) y-axis color. Default green (0, 1, 0). colorz : tuple (3,) z-axis color. Default blue (0, 0, 1). opacity : float, optional Takes values from 0 (fully transparent) to 1 (opaque). Default is 1. Returns ------- vtkActor """ centers = np.zeros((3, 3)) dirs = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) colors = np.array([colorx + (opacity,), colory + (opacity,), colorz + (opacity,)]) scales = np.asarray(scale) return arrow(centers, dirs, colors, scales)
[docs]def odf_slicer(odfs, affine=None, mask=None, sphere=None, scale=2.2, norm=True, radial_scale=True, opacity=1., colormap='blues', global_cm=False): """ Slice spherical fields in native or world coordinates Parameters ---------- odfs : ndarray 4D array of spherical functions affine : array 4x4 transformation array from native coordinates to world coordinates mask : ndarray 3D mask sphere : Sphere a sphere scale : float Distance between spheres. norm : bool Normalize `sphere_values`. radial_scale : bool Scale sphere points according to odf values. opacity : float Takes values from 0 (fully transparent) to 1 (opaque). Default is 1. colormap : None or str If None then white color is used. Otherwise the name of colormap is given. Matplotlib colormaps are supported (e.g., 'inferno'). global_cm : bool If True the colormap will be applied in all ODFs. If False it will be applied individually at each voxel (default False). Returns --------- actor : vtkActor Spheres """ if mask is None: mask = np.ones(odfs.shape[:3], dtype=np.bool) else: mask = mask.astype(np.bool) szx, szy, szz = odfs.shape[:3] class OdfSlicerActor(vtk.vtkLODActor): def __init__(self): self.mapper = None def display_extent(self, x1, x2, y1, y2, z1, z2): tmp_mask = np.zeros(odfs.shape[:3], dtype=np.bool) tmp_mask[x1:x2 + 1, y1:y2 + 1, z1:z2 + 1] = True tmp_mask = np.bitwise_and(tmp_mask, mask) self.mapper = _odf_slicer_mapper(odfs=odfs, affine=affine, mask=tmp_mask, sphere=sphere, scale=scale, norm=norm, radial_scale=radial_scale, colormap=colormap, global_cm=global_cm) self.SetMapper(self.mapper) def display(self, x=None, y=None, z=None): if x is None and y is None and z is None: self.display_extent(0, szx - 1, 0, szy - 1, int(np.floor(szz/2)), int(np.floor(szz/2))) if x is not None: self.display_extent(x, x, 0, szy - 1, 0, szz - 1) if y is not None: self.display_extent(0, szx - 1, y, y, 0, szz - 1) if z is not None: self.display_extent(0, szx - 1, 0, szy - 1, z, z) odf_actor = OdfSlicerActor() odf_actor.display_extent(0, szx - 1, 0, szy - 1, int(np.floor(szz/2)), int(np.floor(szz/2))) odf_actor.GetProperty().SetOpacity(opacity) return odf_actor
def _odf_slicer_mapper(odfs, affine=None, mask=None, sphere=None, scale=2.2, norm=True, radial_scale=True, colormap='plasma', global_cm=False): """ Helper function for slicing spherical fields Parameters ---------- odfs : ndarray 4D array of spherical functions affine : array 4x4 transformation array from native coordinates to world coordinates mask : ndarray 3D mask sphere : Sphere a sphere scale : float Distance between spheres. norm : bool Normalize `sphere_values`. radial_scale : bool Scale sphere points according to odf values. colormap : None or str If None then sphere vertices are used to compute orientation-based color. Otherwise the name of colormap is given. Matplotlib colormaps are supported (e.g., 'inferno'). global_cm : bool If True the colormap will be applied in all ODFs. If False it will be applied individually at each voxel (default False). Returns --------- mapper : vtkPolyDataMapper Spheres mapper """ mask = np.ones(odfs.shape[:3]) if mask is None else mask ijk = np.ascontiguousarray(np.array(np.nonzero(mask)).T) if len(ijk) == 0: return None if affine is not None: ijk = np.ascontiguousarray(apply_affine(affine, ijk)) faces = np.asarray(sphere.faces, dtype=int) vertices = sphere.vertices all_xyz = [] all_faces = [] all_ms = [] for (k, center) in enumerate(ijk): m = odfs[tuple(center.astype(np.int))].copy() if norm: m /= np.abs(m).max() if radial_scale: xyz = vertices * m[:, None] else: xyz = vertices.copy() all_xyz.append(scale * xyz + center) all_faces.append(faces + k * xyz.shape[0]) all_ms.append(m) all_xyz = np.ascontiguousarray(np.concatenate(all_xyz)) all_xyz_vtk = numpy_support.numpy_to_vtk(all_xyz, deep=True) all_faces = np.concatenate(all_faces) all_faces = np.hstack((3 * np.ones((len(all_faces), 1)), all_faces)) ncells = len(all_faces) all_faces = np.ascontiguousarray(all_faces.ravel(), dtype='i8') all_faces_vtk = numpy_support.numpy_to_vtkIdTypeArray(all_faces, deep=True) if global_cm: all_ms = np.ascontiguousarray( np.concatenate(all_ms), dtype='f4') points = vtk.vtkPoints() points.SetData(all_xyz_vtk) cells = vtk.vtkCellArray() cells.SetCells(ncells, all_faces_vtk) if global_cm: if colormap is None: raise IOError("if global_cm=True, colormap must be defined") else: cols = create_colormap(all_ms.ravel(), colormap) else: cols = np.zeros((ijk.shape[0],) + sphere.vertices.shape, dtype='f4') for k in range(ijk.shape[0]): if colormap is not None: tmp = create_colormap(all_ms[k].ravel(), colormap) else: tmp = orient2rgb(sphere.vertices) cols[k] = tmp.copy() cols = np.ascontiguousarray( np.reshape(cols, (cols.shape[0] * cols.shape[1], cols.shape[2])), dtype='f4') vtk_colors = numpy_support.numpy_to_vtk( np.asarray(255 * cols), deep=True, array_type=vtk.VTK_UNSIGNED_CHAR) vtk_colors.SetName("Colors") polydata = vtk.vtkPolyData() polydata.SetPoints(points) polydata.SetPolys(cells) polydata.GetPointData().SetScalars(vtk_colors) mapper = vtk.vtkPolyDataMapper() mapper.SetInputData(polydata) return mapper def _makeNd(array, ndim): """ Pads as many 1s at the beginning of array's shape as are need to give array ndim dimensions. """ new_shape = (1,) * (ndim - array.ndim) + array.shape return array.reshape(new_shape)
[docs]def tensor_slicer(evals, evecs, affine=None, mask=None, sphere=None, scale=2.2, norm=True, opacity=1., scalar_colors=None): """Slice many tensors as ellipsoids in native or world coordinates. Parameters ---------- evals : (3,) or (X, 3) or (X, Y, 3) or (X, Y, Z, 3) ndarray eigenvalues evecs : (3, 3) or (X, 3, 3) or (X, Y, 3, 3) or (X, Y, Z, 3, 3) ndarray eigenvectors affine : array 4x4 transformation array from native coordinates to world coordinates* mask : ndarray 3D mask sphere : Sphere a sphere scale : float Distance between spheres. norm : bool Normalize `sphere_values`. opacity : float Takes values from 0 (fully transparent) to 1 (opaque). Default is 1. scalar_colors : (3,) or (X, 3) or (X, Y, 3) or (X, Y, Z, 3) ndarray RGB colors used to show the tensors Default None, color the ellipsoids using ``color_fa`` Returns --------- actor : vtkActor Ellipsoid """ if not evals.shape == evecs.shape[:-1]: raise RuntimeError( "Eigenvalues shape {} is incompatible with eigenvectors' {}." " Please provide eigenvalue and" " eigenvector arrays that have compatible dimensions." .format(evals.shape, evecs.shape)) if mask is None: mask = np.ones(evals.shape[:3], dtype=np.bool) else: mask = mask.astype(np.bool) szx, szy, szz = evals.shape[:3] class TensorSlicerActor(vtk.vtkLODActor): def __init__(self): self.mapper = None def display_extent(self, x1, x2, y1, y2, z1, z2): tmp_mask = np.zeros(evals.shape[:3], dtype=np.bool) tmp_mask[x1:x2 + 1, y1:y2 + 1, z1:z2 + 1] = True tmp_mask = np.bitwise_and(tmp_mask, mask) self.mapper = _tensor_slicer_mapper(evals=evals, evecs=evecs, affine=affine, mask=tmp_mask, sphere=sphere, scale=scale, norm=norm, scalar_colors=scalar_colors) self.SetMapper(self.mapper) def display(self, x=None, y=None, z=None): if x is None and y is None and z is None: self.display_extent(0, szx - 1, 0, szy - 1, int(np.floor(szz/2)), int(np.floor(szz/2))) if x is not None: self.display_extent(x, x, 0, szy - 1, 0, szz - 1) if y is not None: self.display_extent(0, szx - 1, y, y, 0, szz - 1) if z is not None: self.display_extent(0, szx - 1, 0, szy - 1, z, z) tensor_actor = TensorSlicerActor() tensor_actor.display_extent(0, szx - 1, 0, szy - 1, int(np.floor(szz/2)), int(np.floor(szz/2))) tensor_actor.GetProperty().SetOpacity(opacity) return tensor_actor
def _tensor_slicer_mapper(evals, evecs, affine=None, mask=None, sphere=None, scale=2.2, norm=True, scalar_colors=None): """Helper function for slicing tensor fields Parameters ---------- evals : (3,) or (X, 3) or (X, Y, 3) or (X, Y, Z, 3) ndarray eigenvalues evecs : (3, 3) or (X, 3, 3) or (X, Y, 3, 3) or (X, Y, Z, 3, 3) ndarray eigenvectors affine : array 4x4 transformation array from native coordinates to world coordinates mask : ndarray 3D mask sphere : Sphere a sphere scale : float Distance between spheres. norm : bool Normalize `sphere_values`. scalar_colors : (3,) or (X, 3) or (X, Y, 3) or (X, Y, Z, 3) ndarray RGB colors used to show the tensors Default None, color the ellipsoids using ``color_fa`` Returns --------- mapper : vtkPolyDataMapper Ellipsoid mapper """ mask = np.ones(evals.shape[:3]) if mask is None else mask ijk = np.ascontiguousarray(np.array(np.nonzero(mask)).T) if len(ijk) == 0: return None if affine is not None: ijk = np.ascontiguousarray(apply_affine(affine, ijk)) faces = np.asarray(sphere.faces, dtype=int) vertices = sphere.vertices if scalar_colors is None: from dipy.reconst.dti import color_fa, fractional_anisotropy cfa = color_fa(fractional_anisotropy(evals), evecs) else: cfa = _makeNd(scalar_colors, 4) cols = np.zeros((ijk.shape[0],) + sphere.vertices.shape, dtype='f4') all_xyz = [] all_faces = [] for (k, center) in enumerate(ijk): ea = evals[tuple(center.astype(np.int))] if norm: ea /= ea.max() ea = np.diag(ea.copy()) ev = evecs[tuple(center.astype(np.int))].copy() xyz = np.dot(ev, np.dot(ea, vertices.T)) xyz = xyz.T all_xyz.append(scale * xyz + center) all_faces.append(faces + k * xyz.shape[0]) cols[k, ...] = np.interp(cfa[tuple(center.astype(np.int))], [0, 1], [0, 255]).astype('ubyte') all_xyz = np.ascontiguousarray(np.concatenate(all_xyz)) all_xyz_vtk = numpy_support.numpy_to_vtk(all_xyz, deep=True) all_faces = np.concatenate(all_faces) all_faces = np.hstack((3 * np.ones((len(all_faces), 1)), all_faces)) ncells = len(all_faces) all_faces = np.ascontiguousarray(all_faces.ravel(), dtype='i8') all_faces_vtk = numpy_support.numpy_to_vtkIdTypeArray(all_faces, deep=True) points = vtk.vtkPoints() points.SetData(all_xyz_vtk) cells = vtk.vtkCellArray() cells.SetCells(ncells, all_faces_vtk) cols = np.ascontiguousarray( np.reshape(cols, (cols.shape[0] * cols.shape[1], cols.shape[2])), dtype='f4') vtk_colors = numpy_support.numpy_to_vtk( cols, deep=True, array_type=vtk.VTK_UNSIGNED_CHAR) vtk_colors.SetName("Colors") polydata = vtk.vtkPolyData() polydata.SetPoints(points) polydata.SetPolys(cells) polydata.GetPointData().SetScalars(vtk_colors) mapper = vtk.vtkPolyDataMapper() mapper.SetInputData(polydata) return mapper
[docs]def peak_slicer(peaks_dirs, peaks_values=None, mask=None, affine=None, colors=(1, 0, 0), opacity=1., linewidth=1, lod=False, lod_points=10 ** 4, lod_points_size=3): """Visualize peak directions as given from ``peaks_from_model``. Parameters ---------- peaks_dirs : ndarray Peak directions. The shape of the array can be (M, 3) or (X, M, 3) or (X, Y, M, 3) or (X, Y, Z, M, 3) peaks_values : ndarray Peak values. The shape of the array can be (M, ) or (X, M) or (X, Y, M) or (X, Y, Z, M) affine : array 4x4 transformation array from native coordinates to world coordinates mask : ndarray 3D mask colors : tuple or None Default red color. If None then every peak gets an orientation color in similarity to a DEC map. opacity : float, optional Takes values from 0 (fully transparent) to 1 (opaque) linewidth : float, optional Line thickness. Default is 1. lod : bool Use vtkLODActor(level of detail) rather than vtkActor. Default is False. Level of detail actors do not render the full geometry when the frame rate is low. lod_points : int Number of points to be used when LOD is in effect. Default is 10000. lod_points_size : int Size of points when lod is in effect. Default is 3. Returns ------- vtkActor See Also -------- fury.actor.odf_slicer """ peaks_dirs = np.asarray(peaks_dirs) if peaks_dirs.ndim > 5: raise ValueError("Wrong shape") peaks_dirs = _makeNd(peaks_dirs, 5) if peaks_values is not None: peaks_values = _makeNd(peaks_values, 4) grid_shape = np.array(peaks_dirs.shape[:3]) if mask is None: mask = np.ones(grid_shape).astype(np.bool) class PeakSlicerActor(vtk.vtkLODActor): def __init__(self): self.line = None def display_extent(self, x1, x2, y1, y2, z1, z2): tmp_mask = np.zeros(grid_shape, dtype=np.bool) tmp_mask[x1:x2 + 1, y1:y2 + 1, z1:z2 + 1] = True tmp_mask = np.bitwise_and(tmp_mask, mask) ijk = np.ascontiguousarray(np.array(np.nonzero(tmp_mask)).T) if len(ijk) == 0: self.SetMapper(None) return if affine is not None: ijk_trans = np.ascontiguousarray(apply_affine(affine, ijk)) list_dirs = [] for index, center in enumerate(ijk): # center = tuple(center) if affine is None: xyz = center[:, None] else: xyz = ijk_trans[index][:, None] xyz = xyz.T for i in range(peaks_dirs[tuple(center)].shape[-2]): if peaks_values is not None: pv = peaks_values[tuple(center)][i] else: pv = 1. symm = np.vstack((-peaks_dirs[tuple(center)][i] * pv + xyz, peaks_dirs[tuple(center)][i] * pv + xyz)) list_dirs.append(symm) self.line = line(list_dirs, colors=colors, opacity=opacity, linewidth=linewidth, lod=lod, lod_points=lod_points, lod_points_size=lod_points_size) self.SetProperty(self.line.GetProperty()) self.SetMapper(self.line.GetMapper()) def display(self, x=None, y=None, z=None): if x is None and y is None and z is None: self.display_extent(0, szx - 1, 0, szy - 1, int(np.floor(szz/2)), int(np.floor(szz/2))) if x is not None: self.display_extent(x, x, 0, szy - 1, 0, szz - 1) if y is not None: self.display_extent(0, szx - 1, y, y, 0, szz - 1) if z is not None: self.display_extent(0, szx - 1, 0, szy - 1, z, z) peak_actor = PeakSlicerActor() szx, szy, szz = grid_shape peak_actor.display_extent(0, szx - 1, 0, szy - 1, int(np.floor(szz / 2)), int(np.floor(szz / 2))) return peak_actor
[docs]def dots(points, color=(1, 0, 0), opacity=1, dot_size=5): """Create one or more 3d points. Parameters ---------- points : ndarray, (N, 3) color : tuple (3,) opacity : float, optional Takes values from 0 (fully transparent) to 1 (opaque) dot_size : int Returns -------- vtkActor See Also --------- fury.actor.point """ if points.ndim == 2: points_no = points.shape[0] else: points_no = 1 polyVertexPoints = vtk.vtkPoints() polyVertexPoints.SetNumberOfPoints(points_no) aPolyVertex = vtk.vtkPolyVertex() aPolyVertex.GetPointIds().SetNumberOfIds(points_no) cnt = 0 if points.ndim > 1: for point in points: polyVertexPoints.InsertPoint(cnt, point[0], point[1], point[2]) aPolyVertex.GetPointIds().SetId(cnt, cnt) cnt += 1 else: polyVertexPoints.InsertPoint(cnt, points[0], points[1], points[2]) aPolyVertex.GetPointIds().SetId(cnt, cnt) cnt += 1 aPolyVertexGrid = vtk.vtkUnstructuredGrid() aPolyVertexGrid.Allocate(1, 1) aPolyVertexGrid.InsertNextCell(aPolyVertex.GetCellType(), aPolyVertex.GetPointIds()) aPolyVertexGrid.SetPoints(polyVertexPoints) aPolyVertexMapper = vtk.vtkDataSetMapper() aPolyVertexMapper.SetInputData(aPolyVertexGrid) aPolyVertexActor = vtk.vtkActor() aPolyVertexActor.SetMapper(aPolyVertexMapper) aPolyVertexActor.GetProperty().SetColor(color) aPolyVertexActor.GetProperty().SetOpacity(opacity) aPolyVertexActor.GetProperty().SetPointSize(dot_size) return aPolyVertexActor
[docs]def point(points, colors, _opacity=1., point_radius=0.1, theta=8, phi=8): """Visualize points as sphere glyphs Parameters ---------- points : ndarray, shape (N, 3) colors : ndarray (N,3) or tuple (3,) point_radius : float theta : int phi : int opacity : float, optional Takes values from 0 (fully transparent) to 1 (opaque) Returns ------- vtkActor Examples -------- >>> from fury import window, actor >>> scene = window.Scene() >>> pts = np.random.rand(5, 3) >>> point_actor = actor.point(pts, window.colors.coral) >>> scene.add(point_actor) >>> # window.show(scene) """ return sphere(centers=points, colors=colors, radii=point_radius, theta=theta, phi=phi, vertices=None, faces=None)
[docs]def sphere(centers, colors, radii=1., theta=16, phi=16, vertices=None, faces=None): """Visualize one or many spheres with different colors and radii Parameters ---------- centers : ndarray, shape (N, 3) Spheres positions colors : ndarray (N,3) or (N, 4) or tuple (3,) or tuple (4,) RGB or RGBA (for opacity) R, G, B and A should be at the range [0, 1] radii : float or ndarray, shape (N,) Sphere radius theta : int phi : int vertices : ndarray, shape (N, 3) The point cloud defining the sphere. faces : ndarray, shape (M, 3) If faces is None then a sphere is created based on theta and phi angles If not then a sphere is created with the provided vertices and faces. Returns ------- vtkActor Examples -------- >>> from fury import window, actor >>> scene = window.Scene() >>> centers = np.random.rand(5, 3) >>> sphere_actor = actor.sphere(centers, window.colors.coral) >>> scene.add(sphere_actor) >>> # window.show(scene) """ src = vtk.vtkSphereSource() if faces is None else None if src is not None: src.SetRadius(1) src.SetThetaResolution(theta) src.SetPhiResolution(phi) actor = repeat_sources(centers=centers, colors=colors, active_scalars=radii, source=src, vertices=vertices, faces=faces) return actor
[docs]def cylinder(centers, directions, colors, radius=0.05, heights=1, capped=False, resolution=6, vertices=None, faces=None): """Visualize one or many cylinder with different features. Parameters ---------- centers : ndarray, shape (N, 3) Cylinder positions directions : ndarray, shape (N, 3) The orientation vector of the cylinder. colors : ndarray (N,3) or (N, 4) or tuple (3,) or tuple (4,) RGB or RGBA (for opacity) R, G, B and A should be at the range [0, 1] radius : float cylinder radius, default: 1 heights : ndarray, shape (N) The height of the arrow. capped : bool Turn on/off whether to cap cylinder with polygons. Default (False) resolution: int Number of facets used to define cylinder. vertices : ndarray, shape (N, 3) The point cloud defining the sphere. faces : ndarray, shape (M, 3) If faces is None then a sphere is created based on theta and phi angles If not then a sphere is created with the provided vertices and faces. Returns ------- vtkActor Examples -------- >>> from fury import window, actor >>> scene = window.Scene() >>> centers = np.random.rand(5, 3) >>> dirs = np.random.rand(5, 3) >>> heights = np.random.rand(5) >>> actor = actor.cylinder(centers, dirs, (1, 1, 1), heights=heights) >>> scene.add(actor) >>> # window.show(scene) """ src = vtk.vtkCylinderSource() if faces is None else None if src is not None: src.SetCapping(capped) src.SetResolution(resolution) src.SetRadius(radius) actor = repeat_sources(centers=centers, colors=colors, directions=directions, active_scalars=heights, source=src, vertices=vertices, faces=faces) return actor
[docs]def box(centers, directions, colors, size=(1, 2, 3), heights=1, vertices=None, faces=None): """Visualize one or many Box with different features. Parameters ---------- centers : ndarray, shape (N, 3) Box positions directions : ndarray, shape (N, 3) The orientation vector of the box. colors : ndarray (N,3) or (N, 4) or tuple (3,) or tuple (4,) RGB or RGBA (for opacity) R, G, B and A should be at the range [0, 1] size : tuple (3,) Box lengths on each direction (x, y, z), default(1, 2, 3) heights : ndarray, shape (N) The height of the arrow. vertices : ndarray, shape (N, 3) The point cloud defining the sphere. faces : ndarray, shape (M, 3) If faces is None then a sphere is created based on theta and phi angles If not then a sphere is created with the provided vertices and faces. Returns ------- vtkActor Examples -------- >>> from fury import window, actor >>> scene = window.Scene() >>> centers = np.random.rand(5, 3) >>> dirs = np.random.rand(5, 3) >>> heights = np.random.rand(5) >>> box_actor = actor.box(centers, dirs, (1, 1, 1), heights=heights) >>> scene.add(box_actor) >>> # window.show(scene) """ src = vtk.vtkCubeSource() if faces is None else None if src is not None: src.SetXLength(size[0]) src.SetYLength(size[1]) src.SetZLength(size[2]) actor = repeat_sources(centers=centers, colors=colors, directions=directions, active_scalars=heights, source=src, vertices=vertices, faces=faces) return actor
[docs]def cube(centers, directions, colors, heights=1, vertices=None, faces=None): """Visualize one or many cube with different features. Parameters ---------- centers : ndarray, shape (N, 3) Cube positions directions : ndarray, shape (N, 3) The orientation vector of the cube. colors : ndarray (N,3) or (N, 4) or tuple (3,) or tuple (4,) RGB or RGBA (for opacity) R, G, B and A should be at the range [0, 1] heights : ndarray, shape (N) The height of the arrow. vertices : ndarray, shape (N, 3) The point cloud defining the sphere. faces : ndarray, shape (M, 3) If faces is None then a sphere is created based on theta and phi angles If not then a sphere is created with the provided vertices and faces. Returns ------- vtkActor Examples -------- >>> from fury import window, actor >>> scene = window.Scene() >>> centers = np.random.rand(5, 3) >>> dirs = np.random.rand(5, 3) >>> heights = np.random.rand(5) >>> cube_actor = actor.cube(centers, dirs, (1, 1, 1), heights=heights) >>> scene.add(cube_actor) >>> # window.show(scene) """ return box(centers=centers, directions=directions, colors=colors, size=(1, 1, 1), heights=heights, vertices=vertices, faces=faces)
[docs]def arrow(centers, directions, colors, heights=1., resolution=10, tip_length=0.35, tip_radius=0.1, shaft_radius=0.03, vertices=None, faces=None): """Visualize one or many arrow with differents features. Parameters ---------- centers : ndarray, shape (N, 3) Arrow positions directions : ndarray, shape (N, 3) The orientation vector of the arrow. colors : ndarray (N,3) or (N, 4) or tuple (3,) or tuple (4,) RGB or RGBA (for opacity) R, G, B and A should be at the range [0, 1] heights : ndarray, shape (N) The height of the arrow. resolution : int The resolution of the arrow. tip_length : float The tip size of the arrow (default: 0.35) tip_radius : float the tip radius of the arrow (default: 0.1) shaft_radius : float The shaft radius of the arrow (default: 0.03) vertices : ndarray, shape (N, 3) The point cloud defining the arrow. faces : ndarray, shape (M, 3) If faces is None then a arrow is created based on directions, heights and resolution. If not then a arrow is created with the provided vertices and faces. Returns ------- vtkActor Examples -------- >>> from fury import window, actor >>> scene = window.Scene() >>> centers = np.random.rand(5, 3) >>> directions = np.random.rand(5, 3) >>> heights = np.random.rand(5) >>> arrow_actor = actor.arrow(centers, directions, (1, 1, 1), heights) >>> scene.add(arrow_actor) >>> # window.show(scene) """ src = vtk.vtkArrowSource() if faces is None else None if src is not None: src.SetTipResolution(resolution) src.SetShaftResolution(resolution) src.SetTipLength(tip_length) src.SetTipRadius(tip_radius) src.SetShaftRadius(shaft_radius) actor = repeat_sources(centers=centers, directions=directions, colors=colors, active_scalars=heights, source=src, vertices=vertices, faces=faces) return actor
[docs]def cone(centers, directions, colors, heights=1., resolution=10, vertices=None, faces=None): """Visualize one or many cones with different features. Parameters ---------- centers : ndarray, shape (N, 3) Cone positions directions : ndarray, shape (N, 3) The orientation vector of the cone. colors : ndarray (N,3) or (N, 4) or tuple (3,) or tuple (4,) RGB or RGBA (for opacity) R, G, B and A should be at the range [0, 1] heights : ndarray, shape (N) The height of the cone. resolution : int The resolution of the cone. vertices : ndarray, shape (N, 3) The point cloud defining the cone. faces : ndarray, shape (M, 3) If faces is None then a cone is created based on directions, heights and resolution. If not then a cone is created with the provided vertices and faces. Returns ------- vtkActor Examples -------- >>> from fury import window, actor >>> scene = window.Scene() >>> centers = np.random.rand(5, 3) >>> directions = np.random.rand(5, 3) >>> heights = np.random.rand(5) >>> cone_actor = actor.cone(centers, directions, (1, 1, 1), heights) >>> scene.add(cone_actor) >>> # window.show(scene) """ src = vtk.vtkConeSource() if faces is None else None if src is not None: src.SetResolution(resolution) actor = repeat_sources(centers=centers, directions=directions, colors=colors, active_scalars=heights, source=src, vertices=vertices, faces=faces) return actor
[docs]def superquadric(centers, roundness=(1, 1), directions=(1, 0, 0), colors=(255, 0, 0), scale=1): """Visualize one or many superquadrics with different features. Parameters ---------- centers : ndarray, shape (N, 3) Superquadrics positions roundness : ndarray, shape (N, 2) or tuple/list (2,), optional parameters (Phi and Theta) that control the shape of the superquadric directions : ndarray, shape (N, 3) or tuple (3,), optional The orientation vector of the cone. colors : ndarray (N,3) or (N, 4) or tuple (3,) or tuple (4,) RGB or RGBA (for opacity) R, G, B and A should be at the range [0, 1] scale : ndarray, shape (N) or (N,3) or float or int, optional The height of the cone. Returns ------- vtkActor Examples -------- >>> from fury import window, actor >>> scene = window.Scene() >>> centers = np.random.rand(3, 3) * 10 >>> directions = np.random.rand(3, 3) >>> scale = np.random.rand(5) >>> roundness = np.array([[1, 1], [1, 2], [2, 1]]) >>> sq_actor = actor.superquadric(centers, roundness=roundness, ... directions=directions, ... colors=colors, scale=scale) >>> scene.add(sq_actor) >>> # window.show(scene) """ def have_2_dimensions(arr): return all(isinstance(i, (list, tuple, np.ndarray)) for i in arr) # reshape roundness to a valid numpy array if (isinstance(roundness, (tuple, list, np.ndarray)) and len(roundness) == 2 and not have_2_dimensions(roundness)): roundness = np.array([roundness] * centers.shape[0]) elif isinstance(roundness, np.ndarray) and len(roundness) == 1: roundness = np.repeat(roundness, centers.shape[0], axis=0) else: roundness = np.array(roundness) res = fp.repeat_primitive_function(func=fp.prim_superquadric, centers=centers, func_args=roundness, directions=directions, colors=colors, scale=scale) big_verts, big_faces, big_colors, _ = res actor = get_actor_from_primitive(big_verts, big_faces, big_colors) return actor
[docs]def billboard(centers, colors=(0, 255, 0), scale=1, vs_dec=None, vs_impl=None, fs_dec=None, fs_impl=None, gs_dec=None, gs_impl=None): """Create a billboard actor. Billboards are 2D elements incrusted in a 3D world. It offers you the possibility to draw differents shapes/elements at the shader level. Parameters ---------- centers : ndarray, shape (N, 3) Superquadrics positions colors : ndarray (N,3) or (N, 4) or tuple (3,) or tuple (4,) RGB or RGBA (for opacity) R, G, B and A should be at the range [0, 1] scale : ndarray, shape (N) or (N,3) or float or int, optional The height of the cone. vs_dec : str or list of str, optional vertex shaders code that contains all variable/function delarations vs_impl : str or list of str, optional vertex shaders code that contains all variable/function implementation fs_dec : str or list of str, optional Fragment shaders code that contains all variable/function delarations fs_impl : str or list of str, optional Fragment shaders code that contains all variable/function implementation gs_dec : str or list of str, optional Geometry shaders code that contains all variable/function delarations gs_impl : str or list of str, optional Geometry shaders code that contains all variable/function mplementation Returns ------- vtkActor """ verts, faces = fp.prim_square() res = fp.repeat_primitive(verts, faces, centers=centers, colors=colors, scale=scale) big_verts, big_faces, big_colors, big_centers = res actor = get_actor_from_primitive(big_verts, big_faces, big_colors) actor.GetProperty().BackfaceCullingOff() vtk_centers = numpy_support.numpy_to_vtk(big_centers, deep=True) vtk_centers.SetNumberOfComponents(3) vtk_centers.SetName("center") actor.GetMapper().GetInput().GetPointData().AddArray(vtk_centers) def get_code(glsl_code): code = "" if not glsl_code: return code if not all(isinstance(i, (str)) for i in glsl_code): raise IOError("The only supported format are string or filename," "list of string or filename") if isinstance(glsl_code, str): code += "\n" code += fs.load(glsl_code) if op.isfile(glsl_code) else glsl_code return code for content in glsl_code: code += "\n" code += fs.load(content) if op.isfile(content) else content return code vs_dec_code = get_code(vs_dec) + "\n" + fs.load("billboard_dec.vert") vs_impl_code = get_code(vs_impl) + "\n" + fs.load("billboard_impl.vert") fs_dec_code = get_code(fs_dec) + "\n" + fs.load("billboard_dec.frag") fs_impl_code = fs.load("billboard_impl.frag") + "\n" + get_code(fs_impl) gs_dec_code = get_code(gs_dec) gs_impl_code = get_code(gs_impl) mapper = actor.GetMapper() mapper.MapDataArrayToVertexAttribute( "center", "center", vtk.vtkDataObject.FIELD_ASSOCIATION_POINTS, -1) mapper.AddShaderReplacement( vtk.vtkShader.Vertex, "//VTK::ValuePass::Dec", True, vs_dec_code, False) mapper.AddShaderReplacement( vtk.vtkShader.Vertex, "//VTK::ValuePass::Impl", True, vs_impl_code, False) mapper.AddShaderReplacement( vtk.vtkShader.Fragment, "//VTK::ValuePass::Dec", True, fs_dec_code, False) mapper.AddShaderReplacement( vtk.vtkShader.Fragment, "//VTK::Light::Impl", True, fs_impl_code, False) mapper.AddShaderReplacement( vtk.vtkShader.Geometry, "//VTK::Output::Dec", True, gs_dec_code, False) mapper.AddShaderReplacement( vtk.vtkShader.Geometry, "//VTK::Output::Impl", True, gs_impl_code, False) return actor
[docs]def label(text='Origin', pos=(0, 0, 0), scale=(0.2, 0.2, 0.2), color=(1, 1, 1)): """Create a label actor. This actor will always face the camera Parameters ---------- text : str Text for the label. pos : (3,) array_like, optional Left down position of the label. scale : (3,) array_like Changes the size of the label. color : (3,) array_like Label color as ``(r,g,b)`` tuple. Returns ------- l : vtkActor object Label. Examples -------- >>> from fury import window, actor >>> scene = window.Scene() >>> l = actor.label(text='Hello') >>> scene.add(l) >>> #window.show(scene) """ atext = vtk.vtkVectorText() atext.SetText(text) textm = vtk.vtkPolyDataMapper() textm.SetInputConnection(atext.GetOutputPort()) texta = vtk.vtkFollower() texta.SetMapper(textm) texta.SetScale(scale) texta.GetProperty().SetColor(color) texta.SetPosition(pos) return texta
[docs]def text_3d(text, position=(0, 0, 0), color=(1, 1, 1), font_size=12, font_family='Arial', justification='left', vertical_justification="bottom", bold=False, italic=False, shadow=False): """ Generate 2D text that lives in the 3D world Parameters ---------- text : str position : tuple color : tuple font_size : int font_family : str justification : str Left, center or right (default left) vertical_justification : str Bottom, middle or top (default bottom) bold : bool italic : bool shadow : bool Returns ------- textActor3D """ class TextActor3D(vtk.vtkTextActor3D): def message(self, text): self.set_message(text) def set_message(self, text): self.SetInput(text) self._update_user_matrix() def get_message(self): return self.GetInput() def font_size(self, size): self.GetTextProperty().SetFontSize(24) text_actor.SetScale((1./24.*size,)*3) self._update_user_matrix() def font_family(self, _family='Arial'): self.GetTextProperty().SetFontFamilyToArial() # self._update_user_matrix() def justification(self, justification): tprop = self.GetTextProperty() if justification == 'left': tprop.SetJustificationToLeft() elif justification == 'center': tprop.SetJustificationToCentered() elif justification == 'right': tprop.SetJustificationToRight() else: raise ValueError("Unknown justification: '{}'" .format(justification)) self._update_user_matrix() def vertical_justification(self, justification): tprop = self.GetTextProperty() if justification == 'top': tprop.SetVerticalJustificationToTop() elif justification == 'middle': tprop.SetVerticalJustificationToCentered() elif justification == 'bottom': tprop.SetVerticalJustificationToBottom() else: raise ValueError("Unknown vertical justification: '{}'" .format(justification)) self._update_user_matrix() def font_style(self, bold=False, italic=False, shadow=False): tprop = self.GetTextProperty() if bold: tprop.BoldOn() else: tprop.BoldOff() if italic: tprop.ItalicOn() else: tprop.ItalicOff() if shadow: tprop.ShadowOn() else: tprop.ShadowOff() self._update_user_matrix() def color(self, color): self.GetTextProperty().SetColor(*color) def set_position(self, position): self.SetPosition(position) def get_position(self): return self.GetPosition() def _update_user_matrix(self): """ Text justification of vtkTextActor3D doesn't seem to be working, so we do it manually. Yeah! """ user_matrix = np.eye(4) text_bounds = [0, 0, 0, 0] self.GetBoundingBox(text_bounds) tprop = self.GetTextProperty() if tprop.GetJustification() == vtk.VTK_TEXT_LEFT: user_matrix[:3, -1] += (-text_bounds[0], 0, 0) elif tprop.GetJustification() == vtk.VTK_TEXT_CENTERED: tm = -(text_bounds[0] + (text_bounds[1] - text_bounds[0]) / 2.) user_matrix[:3, -1] += (tm, 0, 0) elif tprop.GetJustification() == vtk.VTK_TEXT_RIGHT: user_matrix[:3, -1] += (-text_bounds[1], 0, 0) if tprop.GetVerticalJustification() == vtk.VTK_TEXT_BOTTOM: user_matrix[:3, -1] += (0, -text_bounds[2], 0) elif tprop.GetVerticalJustification() == vtk.VTK_TEXT_CENTERED: tm = -(text_bounds[2] + (text_bounds[3] - text_bounds[2]) / 2.) user_matrix[:3, -1] += (0, tm, 0) elif tprop.GetVerticalJustification() == vtk.VTK_TEXT_TOP: user_matrix[:3, -1] += (0, -text_bounds[3], 0) user_matrix[:3, -1] *= self.GetScale() self.SetUserMatrix(numpy_to_vtk_matrix(user_matrix)) text_actor = TextActor3D() text_actor.message(text) text_actor.font_size(font_size) text_actor.set_position(position) text_actor.font_family(font_family) text_actor.font_style(bold, italic, shadow) text_actor.color(color) text_actor.justification(justification) text_actor.vertical_justification(vertical_justification) return text_actor
[docs]class Container(object): """ Provides functionalities for grouping multiple actors using a given layout. Attributes ---------- anchor : 3-tuple of float Anchor of this container used when laying out items in a container. The anchor point is relative to the center of the container. Default: (0, 0, 0). padding : 6-tuple of float Padding around this container bounding box. The 6-tuple represents (pad_x_neg, pad_x_pos, pad_y_neg, pad_y_pos, pad_z_neg, pad_z_pos). Default: (0, 0, 0, 0, 0, 0) """
[docs] def __init__(self, layout=layout.Layout()): """ Parameters ---------- layout : ``fury.layout.Layout`` object Items of this container will be arranged according to `layout`. """ self.layout = layout self._items = [] self._need_update = True self._position = np.zeros(3) self._visibility = True self.anchor = np.zeros(3) self.padding = np.zeros(6)
@property def items(self): if self._need_update: self.update() return self._items
[docs] def add(self, *items, **kwargs): """ Adds some items to this container. Parameters ---------- items : `vtkProp3D` objects Items to add to this container. borrow : bool If True the items are added as-is, otherwise a shallow copy is made first. If you intend to reuse the items elsewhere you should set `borrow=False`. Default: True. """ self._need_update = True for item in items: if not kwargs.get('borrow', True): item = shallow_copy(item) self._items.append(item)
[docs] def clear(self): """ Clears all items of this container. """ self._need_update = True del self._items[:]
[docs] def update(self): """ Updates the position of the items of this container. """ self.layout.apply(self._items) self._need_update = False
[docs] def add_to_scene(self, ren): """ Adds the items of this container to a given renderer. """ for item in self.items: if isinstance(item, Container): item.add_to_scene(ren) else: ren.add(item)
[docs] def GetBounds(self): """ Get the bounds of the container. """ bounds = np.zeros(6) # x1, x2, y1, y2, z1, z2 bounds[::2] = np.inf # x1, y1, z1 bounds[1::2] = -np.inf # x2, y2, z2 for item in self.items: item_bounds = item.GetBounds() bounds[::2] = np.minimum(bounds[::2], item_bounds[::2]) bounds[1::2] = np.maximum(bounds[1::2], item_bounds[1::2]) # Add padding, if any. bounds[::2] -= self.padding[::2] bounds[1::2] += self.padding[1::2] return tuple(bounds)
[docs] def GetVisibility(self): return self._visibility
[docs] def SetVisibility(self, visibility): self._visibility = visibility for item in self.items: item.SetVisibility(visibility)
[docs] def GetPosition(self): return self._position
[docs] def AddPosition(self, position): self._position += position for item in self.items: item.AddPosition(position)
[docs] def SetPosition(self, position): self.AddPosition(np.array(position) - self._position)
[docs] def GetCenter(self): """ Get the center of the bounding box. """ x1, x2, y1, y2, z1, z2 = self.GetBounds() return ((x1+x2)/2., (y1+y2)/2., (z1+z2)/2.)
[docs] def GetLength(self): """ Get the length of bounding box diagonal. """ x1, x2, y1, y2, z1, z2 = self.GetBounds() width, height, depth = x2-x1, y2-y1, z2-z1 return np.sqrt(np.sum([width**2, height**2, depth**2]))
[docs] def NewInstance(self): return Container(layout=self.layout)
[docs] def ShallowCopy(self, other): self._position = other._position.copy() self.anchor = other.anchor self.clear() self.add(*other._items, borrow=False) self.update()
def __len__(self): return len(self._items)
[docs]def grid(actors, captions=None, caption_offset=(0, -100, 0), cell_padding=0, cell_shape="rect", aspect_ratio=16/9., dim=None): """ Creates a grid of actors that lies in the xy-plane. Parameters ---------- actors : list of `vtkProp3D` objects Actors to be layout in a grid manner. captions : list of `vtkProp3D` objects or list of str Objects serving as captions (can be any `vtkProp3D` object, not necessarily text). There should be one caption per actor. By default, there are no captions. caption_offset : tuple of float (optional) Tells where to position the caption w.r.t. the center of its associated actor. Default: (0, -100, 0). cell_padding : tuple of 2 floats or float Each grid cell will be padded according to (pad_x, pad_y) i.e. horizontally and vertically. Padding is evenly distributed on each side of the cell. If a single float is provided then both pad_x and pad_y will have the same value. cell_shape : str Specifies the desired shape of every grid cell. 'rect' ensures the cells are the tightest. 'square' ensures the cells are as wide as high. 'diagonal' ensures the content of the cells can be rotated without colliding with content of the neighboring cells. aspect_ratio : float Aspect ratio of the grid (width/height). Default: 16:9. dim : tuple of int Dimension (nb_rows, nb_cols) of the grid. If provided, `aspect_ratio` will be ignored. Returns ------- ``fury.actor.Container`` object Object that represents the grid containing all the actors and captions, if any. """ grid_layout = layout.GridLayout(cell_padding=cell_padding, cell_shape=cell_shape, aspect_ratio=aspect_ratio, dim=dim) grid = Container(layout=grid_layout) if captions is not None: actors_with_caption = [] for actor, caption in zip(actors, captions): actor_center = np.array(actor.GetCenter()) # Offset accordingly the caption w.r.t. # the center of the associated actor. if isinstance(caption, str): caption = text_3d(caption, justification='center') else: caption = shallow_copy(caption) caption.SetPosition(actor_center + caption_offset) actor_with_caption = Container() actor_with_caption.add(actor, caption) # We change the anchor of the container so # the actor will be centered in the # grid cell. actor_with_caption.anchor = actor_center - \ actor_with_caption.GetCenter() actors_with_caption.append(actor_with_caption) actors = actors_with_caption grid.add(*actors) return grid
[docs]def figure(pic, interpolation='nearest'): """ Return a figure as an image actor Parameters ---------- pic : filename or numpy RGBA array interpolation : str Options are nearest, linear or cubic. Default is nearest. Returns ------- image_actor : vtkImageActor """ if isinstance(pic, str): vtk_image_data = load_image(pic, True) else: if pic.ndim == 3 and pic.shape[2] == 4: vtk_image_data = vtk.vtkImageData() vtk_image_data.AllocateScalars(vtk.VTK_UNSIGNED_CHAR, 4) # width, height vtk_image_data.SetDimensions(pic.shape[1], pic.shape[0], 1) vtk_image_data.SetExtent(0, pic.shape[1] - 1, 0, pic.shape[0] - 1, 0, 0) pic_tmp = np.swapaxes(pic, 0, 1) pic_tmp = pic.reshape(pic.shape[1] * pic.shape[0], 4) pic_tmp = np.ascontiguousarray(pic_tmp) uchar_array = numpy_support.numpy_to_vtk(pic_tmp, deep=True) vtk_image_data.GetPointData().SetScalars(uchar_array) image_actor = vtk.vtkImageActor() image_actor.SetInputData(vtk_image_data) if interpolation == 'nearest': image_actor.GetProperty().SetInterpolationTypeToNearest() if interpolation == 'linear': image_actor.GetProperty().SetInterpolationTypeToLinear() if interpolation == 'cubic': image_actor.GetProperty().SetInterpolationTypeToCubic() image_actor.Update() return image_actor
[docs]def texture(rgb, interp=True): """ Map an RGB or RGBA texture on a plane Parameters ---------- rgb : ndarray Input 2D RGB or RGBA array. Dtype should be uint8. interp : bool Interpolate between grid centers. Default True. Returns ------- vtkActor """ arr = rgb grid = rgb_to_vtk(np.ascontiguousarray(arr)) Y, X = arr.shape[:2] # Get vertices and triangles, then scale it vertices, triangles = fp.prim_square() vertices *= np.array([[X, Y, 0]]) # Create a polydata my_polydata = vtk.vtkPolyData() set_polydata_vertices(my_polydata, vertices) set_polydata_triangles(my_polydata, triangles) # Create texture object texture = vtk.vtkTexture() texture.SetInputDataObject(grid) # texture.UseSRGBColorSpaceOn() # texture.SetPremultipliedAlpha(True) if interp: texture.InterpolateOn() # Map texture coordinates map_to_sphere = vtk.vtkTextureMapToPlane() map_to_sphere.SetInputData(my_polydata) # Create mapper and set the mapped texture as input mapper = vtk.vtkPolyDataMapper() mapper.SetInputConnection(map_to_sphere.GetOutputPort()) mapper.Update() # Create actor and set the mapper and the texture act = vtk.vtkActor() act.SetMapper(mapper) act.SetTexture(texture) return act
def _textured_sphere_source(theta=60, phi=60): tss = vtk.vtkTexturedSphereSource() tss.SetThetaResolution(theta) tss.SetPhiResolution(phi) return tss
[docs]def texture_on_sphere(rgb, theta=60, phi=60, interpolate=True): tss = _textured_sphere_source(theta=theta, phi=phi) earthMapper = vtk.vtkPolyDataMapper() earthMapper.SetInputConnection(tss.GetOutputPort()) earthActor = vtk.vtkActor() earthActor.SetMapper(earthMapper) atext = vtk.vtkTexture() grid = rgb_to_vtk(rgb) atext.SetInputDataObject(grid) if interpolate: atext.InterpolateOn() earthActor.SetTexture(atext) return earthActor